

User Guide TensorFlow v1.15 - ZenDNN v3.0

April 2021

© 2020 - 2021 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change

without notice. While every precaution has been taken in the preparation of this document, it may

contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation

to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no

representations or warranties with respect to the accuracy or completeness of the contents of this

document, and assumes no liability of any kind, including the implied warranties of noninfringement,

merchantability or fitness for particular purposes, with respect to the operation or use of AMD

hardware, software or other products described herein. No license, including implied or arising by

estoppel, to any intellectual property rights is granted by this document. Terms and limitations

applicable to the purchase or use of AMD’s products are as set forth in a signed agreement

between the parties or in AMD's Standard Terms and Conditions of Sale. Any unauthorized

copying, alteration, distribution, transmission, performance, display, or other use of this material is

prohibited.

Trademarks

AMD, the AMD Arrow logo, AMD-V, AMD Virtualization, and combinations thereof, are trademarks

of Advanced Micro Devices, Inc.

Windows is a registered trademark of Microsoft Corporation.

MMX is a trademark of Intel Corporation.

Other product names used in this publication are for identification purposes only and may be

trademarks of their respective companies.

Document Information

Software Version: 3.0
Document Version: 3.0
Last Updated: 21st April 2021

User Guide TensorFlow v1.15 - ZenDNN v3.0

Contents

1 Installing ZenDNN .. 1

1.1 Binary Release .. 1

1.2 Docker Release ... 1

1.2.1 Instructions for New Session .. 2

2 Directory Structure .. 2

3 High Level Overview - Block Diagram ... 3

4 TensorFlow CNN Benchmarks ... 3

5 Environment Variables .. 4

6 Tuning Guidelines .. 6

7 Support for Blocked Format ... 7

7.1 Optimal Setting ... 8

8 Support for INT8 .. 8

9 License ... 9

10 Technical Support .. 9

User Guide TensorFlow v1.15 - ZenDNN v3.0

1

1 Installing ZenDNN

1.1 Binary Release
Complete the following steps to install the ZenDNN binary release:

1. Copy the zipped release package to the local system being used. The name of the release

package will be similar to TF_v1.15_ZenDNN_v3.0.zip.

2. Execute the following commands:

a. unzip TF_v1.15_ZenDNN_v3.0.zip

b. cd TF_v1.15_ZenDNN_release*/ZenDNN

c. Ensure that the environment variables ZENDNN_BLIS_PATH and

ZENDNN_AOCC_COMP_PATH are set.

d. source scripts/zendnn_aocc_env_setup.sh

Note:

• Ensure that it is sourced only from the ZenDNN folder.

• If there is any conda environment named tf-1.15-zendnn-rel-env already

present, delete the conda environment tf-1.15-zendnn-rel-env (using command

conda remove --name tf-1.15-zendnn-rel-env --all) before running

scripts/zendnn_aocc_env_setup.sh.

e. source scripts/TF_v1.15_ZenDNN_setup_release.sh

This installs the TensorFlow wheel package provided in the zip file and downloads

the TensorFlow CNN benchmarks.

f. To run the benchmarks with different CNN models at the TensorFlow level, refer to

the TensorFlow CNN Benchmarks section.

1.2 Docker Release
ZenDNN release is also available as a docker image, which is supported on many Linux® flavors.

The name of the docker image will be similar to TF_v1.15_ZenDNN_v3.0_docker.tar.gz.

Prerequisites

Install docker in the Linux® server being used.

Note: If docker has already been installed, please skip this step.

For more information, refer to Docker documentation.

Complete the following steps to install the ZenDNN Docker image:

1. Invoke sudo: sudo su

2. Check if docker is installed on the machine:

docker --version

>>Docker version 19.03.12, build 48a66213fe

3. Copy ZenDNN docker image to the Linux® system being used.

4. Load the Docker image:

docker load -i TF_v1.15_ZenDNN_v3.0_docker.tar.gz

5. Run Docker in privileged mode:

docker run --privileged -itd --name zendnn-tf-rel tf_v1.15_zendnn:3.0

>>2c8af0175b8acc35ab89d8b2111b72310f48d5c5b01d0811fb59ba6dc51ff961

https://github.com/tensorflow/benchmarks.git
https://docs.docker.com/engine/install/ubuntu/

User Guide TensorFlow v1.15 - ZenDNN v3.0

2

Note: This UUID will change for each user/run. Use the above generated UUID in

the step 6.

6. Use the UUID (long identifier) generated from step 5:

docker exec -it 2c8af0175b8acc35ab89d8b2111b72310f48d5c5b01d0811fb59ba6dc51ff961

bash

The command prompt changes to (tf-1.15-zendnn-rel-env) root@2c8af0175b8a:/.

7. To run the benchmarks with different CNN models at the TensorFlow level, refer to the In

the current release, ZenDNN is integrated with TensorFlow and ONNXRT. The dotted

component in the diagram (PyTorch) is not supported in this release but is planned for a

future release.

8. TensorFlow CNN Benchmarks section.

1.2.1 Instructions for New Session

If the terminal where the docker image was installed is closed, please complete the following steps

upon opening a new terminal to continue:

1. Invoke sudo: sudo su

2. Check the previous Docker container for this image tf_v1.15_zendnn:3.0:

docker ps -a

#CONTAINER ID IMAGE COMMAND CREATED STATUS

#2c8af0175b8a tf_v1.15_zendnn:3.0 "/bin/bash" 23 minutes ago Exited (255) 3 minutes

ago

3. Check the STATUS and do one of the following:

o If it is EXITED, start the docker container: docker start <container-id>

o If status is not EXITED or CREATED, go to step 6.

o If no containers for ZenDNN are found, start from step 5.

2 Directory Structure
The release folder consists of a TensorFlow whl file and ZenDNN binary package.

ZenDNN consists of the following directories:

• _out/lib: contains the ZenDNN.so file.

• scripts: contains scripts to set up the environment and run test cases.

User Guide TensorFlow v1.15 - ZenDNN v3.0

3

3 High Level Overview - Block Diagram
The following is a high-level block diagram for the ZenDNN library, which uses the AOCL BLIS

library internally.

In the current release, ZenDNN is integrated with TensorFlow and ONNXRT. The dotted component

in the diagram (PyTorch) is not supported in this release but is planned for a future release.

4 TensorFlow CNN Benchmarks
The benchmark scripts provide performance benchmarking at the TensorFlow level, printing latency

and throughput results for AlexNet, GoogLeNet, Inception-v3, Inception-v4, ResNet50, ResNet152,

VGG16, and VGG19 models.

For latency using tf_cnn_benchmarks.py, execute the following commands:

1. cd TF_v1.15_ZenDNN_release*/ZenDNN

2. source scripts/zendnn_aocc_env_setup.sh

3. source scripts/tf_cnn_benchmarks_latency.sh

TensorFlow

CPU

ZenDNN

DNN Inference App

AOCL BLIS

PyTorch
ONNX RT

User Guide TensorFlow v1.15 - ZenDNN v3.0

4

For throughput using tf_cnn_benchmarks.py, execute the following commands:

1. cd TF_v1.15_ZenDNN_release*/ZenDNN

2. source scripts/zendnn_aocc_env_setup.sh

3. source scripts/tf_cnn_benchmarks_throughput.sh

Note:

• For optimal settings, refer to the Tuning Guidelines section. Current setting refers to 24C, 2P,

SMT=ON configuration.

• If the below warning is seen on the terminal, it can be ignored. During environment setup, there

is an optional script to gather information about hardware, OS, Kernel, and BIOS and it requires

a few utilities (lscpu, lstopo-no-graphics, dmidecode etc.) to be present. If these utilities are not

present, users may see the below warning.

scripts/gather_hw_os_kernel_bios_info.sh

bash: lstopo-no-graphics: command not found

bash: lstopo-no-graphics: command not found

bash: lstopo-no-graphics: command not found

bash: lstopo-no-graphics: command not found

bash: lstopo-no-graphics: command not found

bash: lstopo-no-graphics: command not found

bash: lstopo-no-graphics: command not found

bash: _HW_LSTOPO_NUM_L2CACHE/_HW_LSTOPO_PACKAGES: division by 0 (error token is

"_HW_LSTOPO_PACKAGES")

bash: _HW_LSTOPO_NUM_L3CACHE/_HW_LSTOPO_PACKAGES: division by 0 (error token is

"_HW_LSTOPO_PACKAGES")

sudo: dmidecode: command not found

sudo: dmidecode: command not found

sudo: dmidecode: command not found

5 Environment Variables
ZenDNN uses the environment variables listed below to setup paths, control logs, and tune

performance:

Environment Variable Default Value/User Defined Value

ZENDNN_LOG_OPTS ALL:0

ZENDNN_GIT_ROOT Dir, where ZenDNN folder is located

ZENDNN_PARENT_FOLDER Parent folder for ZenDNN

ZENDNN_AOCC_COMP_PATH AOCC compiler path1

ZENDNN_BLIS_PATH AOCL BLIS path1

TF_GIT_ROOT TensorFlow folder path

BENCHMARKS_GIT_ROOT TensorFlow CNN benchmark

directory

1 User must set these environment variables explicitly.

User Guide TensorFlow v1.15 - ZenDNN v3.0

5

TF_ZEN_PRIMITIVE_REUSE_DISABLE False

ZENDNN_MEMPOOL_ENABLE 1

ZENDNN_PRIMITIVE_CACHE_CAPACITY The default value is set to 500, user

can change it as required2

ZENDNN_TENSOR_BUF_MAXSIZE_ENABLE 0

ZENDNN_TF_INTEROP_THREADS Default value is set to 1. For

ZENDNN_TF_INTEROP_THREADS

> 1, disable

ZENDNN_MEMPOOL_ENABLE by

setting it to 0

OMP_DYNAMIC FALSE

ZENDNN_INFERENCE_ONLY Default value is set to 1. User can

change to 0 to enable training which

will fall back to TensorFlow Vanilla

as training is not supported by

ZenDNN.

Following is a list of environment variables to tune performance:

Environment Variable Default Value/User Defined Value

OMP_NUM_THREADS The default value is set to 24. User can set it as

per the number of cores in the user system1.

OMP_WAIT_POLICY ACTIVE

OMP_PROC_BIND FALSE

GOMP_CPU_AFFINITY Set it as per the number of cores in the system

being used1

ZENDNN_TENSOR_POOL_LIMIT 16

ZENDNN_BLOCKED_FORMAT The default value is set to 0. User can change to

1 to enable the Blocked Format support2.

ZENDNN_INT8_SUPPORT The default value is set to 0. User can change to

1 to enable the INT8 data type support. This only

works with NHWC format

(ZENDNN_BLOCKED_FORMAT=0).

ZENDNN_RELU_UPPERBOUND The default value is set to 0. User can change to

1 to enable the Relu6 fusion. This only works with

INT8 (ZENDNN_INT8_SUPPORT =1).

2 These environment variables work only for Blocked Format.

User Guide TensorFlow v1.15 - ZenDNN v3.0

6

ZENDNN_TF_CONV_ADD_FUSION_SAFE The default value is set to 0. User can change to

1 to enable Conv, Add fusion. Currently it is safe

to enable this switch for resnet50v1_5,

resnet101, and inception_resnet_v2 models only

When source scripts/zendnn_aocc_env_setup.sh is invoked, the script initializes all the environment

variables except the one which must be set manually. The environment variables

ZENDNN_PARENT_FOLDER, TF_GIT_ROOT, and BENCHMARKS_GIT_ROOT are initialized

relative to the path defined by ZENDNN_GIT_ROOT. To ensure that the paths are initialized

correctly, it is important that the script is invoked from the ZenDNN folder.

6 Tuning Guidelines
The hardware configuration, OS, Kernel, and BIOS settings play an important role in performance.

The details for the environment variables used on a 2nd Gen AMD EPYC server to get the best

performance numbers are as follows:

2nd Gen AMD EPYC Machine Used:

Model name 2nd Gen AMD EPYC 7352 24-Core Processor

CPU MHz 1494.914

No of Cores 24

1P/2P 2

SMT: Thread(s) per Core 2

Mem-Dims 16x16 GB

OS Used: Ubuntu 18.04.05 LTS (Kernel 4.15.0-135-generic #139-Ubuntu SMP)

Environment Variables Used:

ZENDNN_LOG_OPTS=ALL:0

OMP_NUM_THREADS=24

OMP_WAIT_POLICY=ACTIVE

OMP_PROC_BIND=FALSE

ZENDNN_TF_INTEROP_THREADS=1

OMP_DYNAMIC=FALSE

ZENDNN_MEMPOOL_ENABLE=1

ZENDNN_TENSOR_POOL_LIMIT=16

ZENDNN_TENSOR_BUF_MAXSIZE_ENABLE=0

ZENDNN_BLOCKED_FORMAT=0

User Guide TensorFlow v1.15 - ZenDNN v3.0

7

ZENDNN_GIT_ROOT=/home/<user_id>/my_work/ZenDNN

ZENDNN_PARENT_FOLDER=/home/<user_id>/my_work

ZENDNN_AOCC_COMP_PATH=/home/<user_id>/my_work/aocc-compiler-3.0.0

ZENDNN_BLIS_PATH=/home/<user_id>/my_work/aocl-linux-aocc-3.0-6/amd-blis

TF_GIT_ROOT=/home/<user_id>/my_work/tensorflow

BENCHMARKS_GIT_ROOT=/home/<user_id>/my_work/benchmarks

PYTORCH_GIT_ROOT=/home/<user_id>/my_work/pytorch

PYTORCH_BENCHMARK_GIT_ROOT=/home/<user_id>/my_work/pytorch-benchmarks

ONNXRUNTIME_GIT_ROOT=/home/<user_id>/my_work/onnxruntime

ZENDNN_PRIMITIVE_CACHE_CAPACITY=500

ZENDNN_INT8_SUPPORT=0

ZENDNN_RELU_UPPERBOUND=0

ZENDNN_INFERENCE_ONLY=1

ZENDNN_TF_CONV_ADD_FUSION_SAFE=0

GOMP_CPU_AFFINITY=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

As mentioned in the Environment Variables section, the script

scripts/zendnn_aocc_env_setup.sh, initializes all the environment variables except the one which

users must set manually. The environment variables OMP_NUM_THREADS,

OMP_WAIT_POLICY, OMP_PROC_BIND, and GOMP_CPU_AFFINITY can be used to tune

performance. For optimal performance, the Batch Size must be a multiple of the total number of

cores (used by the threads). On a 2nd Gen AMD EPYC server (configuration: AMD EPYC 7352,

24-Cores, 2P, and SMT=ON), with the above environment variable values,

OMP_NUM_THREADS=24, GOMP_CPU_AFFINITY=”0-23”, and Batch size =480 yield the best

throughput numbers.

Batch Size is sensitive factor for the throughput performance of any model. The following formula

calculates optimal Batch Size:

Batch Size = number_of_physical_cores * batch_factor

batch_factor may vary from 16-32; 32 usually gives the best performance.

A few of the models (e.g., publicly available ResNet50 model) gain performance with Transparent

Huge Pages settings (THP). THP can be enabled as a sudo user using the command:

echo always > /sys/kernel/mm/transparent_hugepage/enabled

7 Support for Blocked Format
ZenDNN supports the Beta version of Blocked Format. It is also known as nChw8c format, which may

provide optimized performance for some ML workloads. This can be enabled with the environment

variable ZENDNN_BLOCKED_FORMAT.

User Guide TensorFlow v1.15 - ZenDNN v3.0

8

export ZENDNN_BLOCKED_FORMAT=1

The environment variable must be unset to fall back to the default path (NHWC) again.

7.1 Optimal Setting
Optimal performance of several ZenDNN workloads is observed when interleaving is enabled in

conjunction with NPS4 mode.

A sample command line to run a Python code with 64C in NPS4 mode is as follows:

export GOMP_CPU_AFFINITY=0-63 && export ZENDNN_BLOCKED_FORMAT=1 && export
OMP_NUM_THREADS=64 && numactl --cpunodebind=0-3 --interleave=0-3 python workload.py

8 Support for INT8
Quantization is an active area of research and a popular compression technique to accelerate

neural network performance. Several competitive submissions from MLPerf leverage lower

precisions to showcase hardware capability.

A few of these quantized neural networks models and pb files are publicly available. On AMD 3rd

Gen EPYC platforms, ZenDNN offers options to enable experimental mode for INT8 quantization

with widely used Resnet50 and MobileNetV1 models. The experimental models can be leveraged

using publicly available Intel® AI models/benchmarks.

This can be enabled with the following environment variables:

export ZENDNN_BLOCKED_FORMAT=0

export ZENDNN_INT8_SUPPORT=1

export ZENDNN_RELU_UPPERBOUND=1

User Guide TensorFlow v1.15 - ZenDNN v3.0

9

9 License
Please refer to the AMD ZenDNN EULA for more details on the third-party programs used in this

release and their corresponding licenses. Upon selecting a ZenDNN package to download,

Developer Central will redirect users to said AMD ZenDNN EULA document. The terms and

conditions set forth in the EULA must be accepted before the download will commence.

This distribution includes the following third-party softwares, which are governed by separate

license terms described in the AMD ZenDNN EULA:

• oneDNN

• Xbyak

• Boost C++ Libraries

• TensorFlow

• Caffe

• gtest

10 Technical Support
Please email zendnnsupport@amd.com for questions, issues, and feedback regarding ZenDNN.

https://github.com/oneapi-src/oneDNN
https://github.com/herumi/xbyak
https://www.boost.org/
https://github.com/tensorflow/tensorflow
https://github.com/BVLC/caffe
https://github.com/google/googletest
mailto:zendnnsupport@amd.com

	1 Installing ZenDNN
	1.1 Binary Release
	1.2 Docker Release
	1.2.1 Instructions for New Session

	2 Directory Structure
	3 High Level Overview - Block Diagram
	4 TensorFlow CNN Benchmarks
	5 Environment Variables
	6 Tuning Guidelines
	7 Support for Blocked Format
	7.1 Optimal Setting

	8 Support for INT8
	9 License
	10 Technical Support

