
"AMD Instinct MI200" Instruction Set
Architecture
Reference Guide

4-February-2022

Specification Agreement

This Specification Agreement (this "Agreement") is a legal agreement between Advanced Micro Devices, Inc. ("AMD") and "You"

as the recipient of the attached AMD Specification (the "Specification"). If you are accessing the Specification as part of your

performance of work for another party, you acknowledge that you have authority to bind such party to the terms and

conditions of this Agreement. If you accessed the Specification by any means or otherwise use or provide Feedback (defined

below) on the Specification, You agree to the terms and conditions set forth in this Agreement. If You do not agree to the terms

and conditions set forth in this Agreement, you are not licensed to use the Specification; do not use, access or provide Feedback

about the Specification. In consideration of Your use or access of the Specification (in whole or in part), the receipt and

sufficiency of which are acknowledged, You agree as follows:

1. You may review the Specification only (a) as a reference to assist You in planning and designing Your product, service or

technology ("Product") to interface with an AMD product in compliance with the requirements as set forth in the

Specification and (b) to provide Feedback about the information disclosed in the Specification to AMD.

2. Except as expressly set forth in Paragraph 1, all rights in and to the Specification are retained by AMD. This Agreement

does not give You any rights under any AMD patents, copyrights, trademarks or other intellectual property rights. You

may not (i) duplicate any part of the Specification; (ii) remove this Agreement or any notices from the Specification, or (iii)

give any part of the Specification, or assign or otherwise provide Your rights under this Agreement, to anyone else.

3. The Specification may contain preliminary information, errors, or inaccuracies, or may not include certain necessary

information. Additionally, AMD reserves the right to discontinue or make changes to the Specification and its products at

any time without notice. The Specification is provided entirely "AS IS." AMD MAKES NO WARRANTY OF ANY KIND AND

DISCLAIMS ALL EXPRESS, IMPLIED AND STATUTORY WARRANTIES, INCLUDING BUT NOT LIMITED TO IMPLIED

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, TITLE OR THOSE

WARRANTIES ARISING AS A COURSE OF DEALING OR CUSTOM OF TRADE. AMD SHALL NOT BE LIABLE FOR DIRECT,

INDIRECT, CONSEQUENTIAL, SPECIAL, INCIDENTAL, PUNITIVE OR EXEMPLARY DAMAGES OF ANY KIND (INCLUDING

LOSS OF BUSINESS, LOSS OF INFORMATION OR DATA, LOST PROFITS, LOSS OF CAPITAL, LOSS OF GOODWILL)

REGARDLESS OF THE FORM OF ACTION WHETHER IN CONTRACT, TORT (INCLUDING NEGLIGENCE) AND STRICT

PRODUCT LIABILITY OR OTHERWISE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

4. Furthermore, AMDÕs products are not designed, intended, authorized or warranted for use as components in systems

intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other

application in which the failure of AMDÕs product could create a situation where personal injury, death, or severe

property or environmental damage may occur.

5. You have no obligation to give AMD any suggestions, comments or feedback ("Feedback") relating to the Specification.

However, any Feedback You voluntarily provide may be used by AMD without restriction, fee or obligation of

confidentiality. Accordingly, if You do give AMD Feedback on any version of the Specification, You agree AMD may freely

use, reproduce, license, distribute, and otherwise commercialize Your Feedback in any product, as well as has the right to

sublicense third parties to do the same. Further, You will not give AMD any Feedback that You may have reason to believe

is (i) subject to any patent, copyright or other intellectual property claim or right of any third party; or (ii) subject to

license terms which seek to require any product or intellectual property incorporating or derived from Feedback or any

Product or other AMD intellectual property to be licensed to or otherwise provided to any third party.

6. You shall adhere to all applicable U.S., European, and other export laws, including but not limited to the U.S. Export

Administration Regulations ("EAR"), (15 C.F.R. Sections 730 through 774), and E.U. Council Regulation (EC) No 428/2009 of

5 May 2009. Further, pursuant to Section 740.6 of the EAR, You hereby certifies that, except pursuant to a license granted

by the United States Department of Commerce Bureau of Industry and Security or as otherwise permitted pursuant to a

License Exception under the U.S. Export Administration Regulations ("EAR"), You will not (1) export, re-export or release

to a national of a country in Country Groups D:1, E:1 or E:2 any restricted technology, software, or source code You receive

hereunder, or (2) export to Country Groups D:1, E:1 or E:2 the direct product of such technology or software, if such

foreign produced direct product is subject to national security controls as identified on the Commerce Control List

(currently found in Supplement 1 to Part 774 of EAR). For the most current Country Group listings, or for additional

"AMD Instinct MI200" Instruction Set Architecture

ii of 267

information about the EAR or Your obligations under those regulations, please refer to the U.S. Bureau of Industry and

SecurityÕs website at http://www.bis.doc.gov/ .

7. If You are a part of the U.S. Government, then the Specification is provided with "RESTRICTED RIGHTS" as set forth in

subparagraphs (c) (1) and (2) of the Commercial Computer Software-Restricted Rights clause at FAR 52.227-14 or

subparagraph (c) (1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7013, as

applicable.

8. This Agreement is governed by the laws of the State of California without regard to its choice of law principles. Any

dispute involving it must be brought in a court having jurisdiction of such dispute in Santa Clara County, California, and

You waive any defenses and rights allowing the dispute to be litigated elsewhere. If any part of this agreement is

unenforceable, it will be considered modified to the extent necessary to make it enforceable, and the remainder shall

continue in effect. The failure of AMD to enforce any rights granted hereunder or to take action against You in the event

of any breach hereunder shall not be deemed a waiver by AMD as to subsequent enforcement of rights or subsequent

actions in the event of future breaches. This Agreement is the entire agreement between You and AMD concerning the

Specification; it may be changed only by a written document signed by both You and an authorized representative of

AMD.

DISCLAIMER

The information contained herein is for informational purposes only, and is subject to change without notice. This

document may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to

update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties

with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind,

including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect

to the operation or use of AMD hardware, software or other products described herein. No license, including implied

or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations

applicable to the purchase or use of AMDÕs products or technology are as set forth in a signed agreement between the

parties or in AMDÕs Standard Terms and Conditions of Sale.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. OpenCL is a

trademark of Apple Inc. used by permission by Khronos Group, Inc. OpenGL¨ and the oval logo are trademarks or

registered trademarks of Hewlett Packard Enterprise in the United States and/or other countries worldwide. DirectX is

a registered trademark of Microsoft Corporation in the US and other jurisdictions. Other product names used in this

publication are for identification purposes only and may be trademarks of their respective companies.

© 2018-2021 Advanced Micro Devices, Inc. All rights reserved.

Advanced Micro Devices, Inc.
2485 Augustine Drive

Santa Clara, CA, 95054
www.amd.com

"AMD Instinct MI200" Instruction Set Architecture

iii of 267

http://www.bis.doc.gov/

Contents
Preface . Ê1

About This Document. Ê1
Audience . Ê1
Organization. Ê1
Conventions . Ê2
Feature Changes in MI200 devices . Ê2

Removed all IMAGE and GATHER instructions except for the following: Ê2
Added Matrix Arithmetic Instructions: . Ê3
FP32 Packed Math . Ê3

Contact Information . Ê3
1. Introduction . Ê4

1.1. Terminology. Ê5
2. Program Organization. Ê7

2.1. Compute Shaders . Ê7
2.2. Data Sharing . Ê8

2.2.1. Local Data Share (LDS) . Ê8
2.2.2. Global Wave Sync (GDS/GWS) . Ê9

2.3. Device Memory . Ê9
3. Kernel State . Ê10

3.1. State Overview . Ê10
3.2. Program Counter (PC) . Ê11
3.3. EXECute Mask . Ê11
3.4. Status registers . Ê12
3.5. Mode register . Ê13
3.6. GPRs and LDS . Ê14

3.6.1. Out-of-Range behavior . Ê14
3.6.2. SGPR Allocation and storage . Ê15
3.6.3. SGPR Alignment . Ê15
3.6.4. VGPR Allocation and Alignment . Ê15
3.6.5. LDS Allocation and Clamping . Ê16

3.7. M0 Memory Descriptor . Ê16
3.8. SCC: Scalar Condition code . Ê17
3.9. Vector Compares: VCC and VCCZ. Ê17
3.10. Trap and Exception registers . Ê18

3.10.1. Trap Status register . Ê19
3.11. Memory Violations. Ê19
3.12. Hardware ID Registers . Ê20

4. Program Flow Control. Ê21
4.1. Program Control . Ê21
4.2. Branching . Ê21

"AMD Instinct MI200" Instruction Set Architecture

iv of 267

4.3. Workgroups. Ê22
4.4. Data Dependency Resolution . Ê22
4.5. Manually Inserted Wait States (NOPs) . Ê23
4.6. Arbitrary Divergent Control Flow . Ê24

5. Scalar ALU Operations . Ê27
5.1. SALU Instruction Formats. Ê27
5.2. Scalar ALU Operands . Ê27
5.3. Scalar Condition Code (SCC) . Ê30
5.4. Integer Arithmetic Instructions. Ê30
5.5. Conditional Instructions. Ê31
5.6. Comparison Instructions . Ê31
5.7. Bit-Wise Instructions . Ê31
5.8. Access Instructions . Ê33

6. Vector ALU Operations . Ê35
6.1. Microcode Encodings . Ê35
6.2. Operands . Ê36

6.2.1. Instruction Inputs . Ê36
6.2.2. Instruction Outputs . Ê37
6.2.3. Out-of-Range GPRs . Ê39

6.3. Instructions . Ê39
6.4. Denormalized and Rounding Modes. Ê41
6.5. ALU Clamp Bit Usage . Ê42
6.6. VGPR Indexing . Ê42

6.6.1. Indexing Instructions . Ê42
6.6.2. VGPR Indexing Details . Ê43

6.7. Packed Math . Ê43
7. Matrix Arithmetic Instructions (MAI) . Ê45

7.1. Matrix Arithmetic Opcodes . Ê45
7.2. Dependency Resolution: Required NOPs. Ê47

8. Scalar Memory Operations. Ê50
8.1. Microcode Encoding . Ê50
8.2. Operations. Ê51

8.2.1. S_LOAD_DWORD, S_STORE_DWORD . Ê51
8.2.2. Scalar Atomic Operations . Ê52
8.2.3. S_DCACHE_INV, S_DCACHE_WB . Ê53
8.2.4. S_MEMTIME . Ê53
8.2.5. S_MEMREALTIME . Ê53

8.3. Dependency Checking . Ê53
8.4. Alignment and Bounds Checking . Ê53

9. Vector Memory Operations. Ê55
9.1. Vector Memory Buffer Instructions . Ê55

9.1.1. Simplified Buffer Addressing . Ê56

"AMD Instinct MI200" Instruction Set Architecture

v of 267

9.1.2. Buffer Instructions . Ê56
9.1.3. VGPR Usage. Ê58
9.1.4. Buffer Data . Ê59
9.1.5. Buffer Addressing . Ê60
9.1.6. 16-bit Memory Operations. Ê65
9.1.7. Alignment. Ê65
9.1.8. Buffer Resource. Ê65
9.1.9. Memory Buffer Load to LDS . Ê66
9.1.10. GLC Bit Explained . Ê67

9.2. Vector Memory (VM) Image Instructions. Ê68
9.2.1. Image Instructions . Ê69

9.3. Image Opcodes with No Sampler . Ê70
9.4. Image Opcodes with a Sampler . Ê71

9.4.1. VGPR Usage. Ê71
9.4.2. Image Resource . Ê73
9.4.3. Image Sampler . Ê74
9.4.4. Data Formats. Ê75
9.4.5. Vector Memory Instruction Data Dependencies . Ê76

9.5. Float Memory Atomics. Ê77
9.5.1. Rounding of Float Atomics. Ê77
9.5.2. Denormal (Subnormal) Handling. Ê77
9.5.3. NaN Handling . Ê78

10. Flat Memory Instructions . Ê80
10.1. Flat Memory Instruction. Ê80
10.2. Instructions . Ê82

10.2.1. Ordering. Ê82
10.2.2. Important Timing Consideration . Ê82

10.3. Addressing . Ê83
10.3.1. Atomics . Ê83

10.4. Global . Ê83
10.5. Scratch . Ê84
10.6. Memory Error Checking . Ê84
10.7. Data. Ê85
10.8. Scratch Space (Private) . Ê85

11. Data Share Operations . Ê86
11.1. Overview . Ê86
11.2. Dataflow in Memory Hierarchy . Ê87
11.3. LDS Access . Ê87

11.3.1. LDS Direct Reads . Ê88
11.3.2. Data Share Indexed and Atomic Access . Ê88

11.4. GWS Programming Restriction . Ê90
12. Instructions . Ê91

"AMD Instinct MI200" Instruction Set Architecture

vi of 267

12.1. SOP2 Instructions . Ê91
12.2. SOPK Instructions. Ê95
12.3. SOP1 Instructions . Ê97
12.4. SOPC Instructions. Ê105
12.5. SOPP Instructions. Ê107

12.5.1. Send Message. Ê110
12.6. SMEM Instructions . Ê110
12.7. VOP2 Instructions . Ê117

12.7.1. VOP2 using VOP3 encoding . Ê122
12.8. VOP1 Instructions . Ê122

12.8.1. VOP1 using VOP3 encoding . Ê135
12.9. VOPC Instructions. Ê135

12.9.1. VOPC using VOP3A encoding . Ê145
12.10. VOP3P Instructions. Ê146
12.11. VOP3A & VOP3B Instructions. Ê149
12.12. LDS & GDS Instructions . Ê165

12.12.1. DS_SWIZZLE_B32 Details . Ê181
12.13. MUBUF Instructions . Ê182
12.14. MTBUF Instructions . Ê188
12.15. MIMG Instructions. Ê189
12.16. FLAT, Scratch and Global Instructions . Ê191

12.16.1. Flat Instructions . Ê192
12.16.2. Scratch Instructions. Ê196
12.16.3. Global Instructions. Ê197

12.17. Instruction Limitations . Ê201
12.17.1. DPP . Ê201
12.17.2. SDWA . Ê202

13. Microcode Formats . Ê203
13.1. Scalar ALU and Control Formats . Ê204

13.1.1. SOP2. Ê204
13.1.2. SOPK. Ê207
13.1.3. SOP1. Ê209
13.1.4. SOPC . Ê212
13.1.5. SOPP. Ê214

13.2. Scalar Memory Format . Ê215
13.2.1. SMEM . Ê216

13.3. Vector ALU Formats . Ê219
13.3.1. VOP2. Ê219
13.3.2. VOP1. Ê222
13.3.3. VOPC . Ê226
13.3.4. VOP3A. Ê234
13.3.5. VOP3B. Ê239

"AMD Instinct MI200" Instruction Set Architecture

vii of 267

13.3.6. VOP3P. Ê242
13.3.7. SDWA . Ê246
13.3.8. SDWAB . Ê247
13.3.9. DPP . Ê248

13.4. LDS and GDS format . Ê250
13.4.1. DS . Ê250

13.5. Vector Memory Buffer Formats . Ê254
13.5.1. MTBUF . Ê254
13.5.2. MUBUF . Ê256

13.6. Vector Memory Image Format . Ê259
13.6.1. MIMG. Ê259

13.7. Flat Formats . Ê262
13.7.1. FLAT . Ê262
13.7.2. GLOBAL . Ê264
13.7.3. SCRATCH . Ê266

"AMD Instinct MI200" Instruction Set Architecture

viii of 267

Preface

About This Document
This document describes the current environment, organization and program state of AMD
CDNA "Instinct MI200" devices. It details the instruction set and the microcode formats native to
this family of processors that are accessible to programmers and compilers.

The document specifies the instructions (include the format of each type of instruction) and the
relevant program state (including how the program state interacts with the instructions). Some
instruction fields are mutually dependent; not all possible settings for all fields are legal. This
document specifies the valid combinations.

The main purposes of this document are to:

1. Specify the language constructs and behavior, including the organization of each type of
instruction in both text syntax and binary format.

2. Provide a reference of instruction operation that compiler writers can use to maximize
performance of the processor.

Audience
This document is intended for programmers writing application and system software, including
operating systems, compilers, loaders, linkers, device drivers, and system utilities. It assumes
that programmers are writing compute-intensive parallel applications (streaming applications)
and assumes an understanding of requisite programming practices.

Organization
This document begins with an overview of the AMD CDNA processors' hardware and
programming environment (Chapter 1).
Chapter 2 describes the organization of CDNA programs.
Chapter 3 describes the program state that is maintained.
Chapter 4 describes the program flow.
Chapter 5 describes the scalar ALU operations.
Chapter 6 describes the vector ALU operations.
Chapter 7 describes the vector Matrix ALU operations.
Chapter 8 describes the scalar memory operations.
Chapter 9 describes the vector memory operations.
Chapter 10 provides information about the flat memory instructions.
Chapter 11 describes the data share operations.
Chapter 12 describes instruction details, first by the microcode format to which they belong,

"AMD Instinct MI200" Instruction Set Architecture

About This Document 1 of 267

then in alphabetic order.
Finally, Chapter 13 provides a detailed specification of each microcode format.

Conventions
The following conventions are used in this document:

mono-spaced font A filename, file path or code.

* Any number of alphanumeric characters in the name of a code format,
parameter, or instruction.

< > Angle brackets denote streams.

[1,2) A range that includes the left-most value (in this case, 1), but excludes the right-
most value (in this case, 2).

[1,2] A range that includes both the left-most and right-most values.

{x | y} One of the multiple options listed. In this case, X or Y.

0.0 A single-precision (32-bit) floating-point value.

1011b A binary value, in this example a 4-bit value.

7:4 A bit range, from bit 7 to bit 4, inclusive. The high-order bit is shown first.

italicized word or phrase The first use of a term or concept basic to the understanding of stream
computing.

Feature Changes in MI200 devices
¥ Supports DPP for 64-bit data types
¥ Float64 memory atomic operations: ACC, MIN, MAX
¥ Merged Architectural and Accumulation VGPRs into one unified pool of VGPRs
¥ Allow memory operations to return data directly to accumulation VGPRs
¥ Remove GDS operations (retain GWS operations)
¥ Merged compute shader thread indices into a single VGPR
¥ Remove support for "SRC2" DS instructions

Removed all IMAGE and GATHER instructions except for the
following:

IMAGE_LOAD IMAGE_ATOMIC_AND

IMAGE_LOAD_MIP IMAGE_ATOMIC_OR

IMAGE_STORE IMAGE_ATOMIC_XOR

IMAGE_STORE_MIP IMAGE_ATOMIC_INC

"AMD Instinct MI200" Instruction Set Architecture

Conventions 2 of 267

IMAGE_GET_RESINFO IMAGE_ATOMIC_DEC

IMAGE_ATOMIC_SWAP IMAGE_LOAD_PCK

IMAGE_ATOMIC_CMPSWAP IMAGE_LOAD_PCK_SGN

IMAGE_ATOMIC_ADD IMAGE_LOAD_MIP_PCK

IMAGE_ATOMIC_SUB IMAGE_LOAD_MIP_PCK_SGN

IMAGE_ATOMIC_SMIN IMAGE_STORE_PCK

IMAGE_ATOMIC_UMIN IMAGE_STORE_MIP_PCK

IMAGE_ATOMIC_SMAX

IMAGE_ATOMIC_UMAX IMAGE_SAMPLE

Added Matrix Arithmetic Instructions:

¥ V_MFMA_F32_{4x4x4, 16x16x4, 16x16x16, 32x32x4, 32x32x8, 16x16x16}BF16_1K
¥ V_MFMA_F64_{16x16x4f64, 4x4x4f64 }

FP32 Packed Math

¥ V_PK_FMA_F32
¥ V_PK_MUL_F32
¥ V_PK_ADD_F32
¥ V_PK_MOV_B32

Contact Information
For information concerning AMD Accelerated Parallel Processing development, please see:
http://developer.amd.com/ .

For information about developing with AMD Accelerated Parallel Processing, please see:
developer.amd.com/appsdk .

AMD also has a growing community of AMD Accelerated Parallel Processing users. Come visit
us at the AMD Accelerated Parallel Processing Developer Forum (http://developer.amd.com/
openclforum) to find out what applications other users are trying on their AMD Accelerated
Parallel Processing products.

"AMD Instinct MI200" Instruction Set Architecture

Contact Information 3 of 267

http://developer.amd.com/
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum

Chapter 1. Introduction
AMD CDNA processors implement a parallel micro-architecture that is designed to provide an
excellent platform for general-purpose data parallel applications. Data-intensive applications
that require high bandwidth or are computationally intensive are a candidate for running on an
AMD CDNA processor.

The figure below shows a block diagram of the AMD CDNA Generation series processors

Figure 1. AMD CDNA Generation Series Block Diagram

The CDNA device includes a data-parallel processor (DPP) array, a command processor, a
memory controller, and other logic (not shown). The CDNA command processor reads
commands that the host has written to memory-mapped CDNA registers in the system-memory
address space. The command processor sends hardware-generated interrupts to the host when
the command is completed. The CDNA memory controller has direct access to all CDNA device
memory and the host-specified areas of system memory. To satisfy read and write requests, the
memory controller performs the functions of a direct-memory access (DMA) controller, including
computing memory-address offsets based on the format of the requested data in memory. In the
CDNA environment, a complete application includes two parts:

¥ a program running on the host processor, and
¥ programs, called kernels, running on the CDNA processor.

The CDNA programs are controlled by host commands that

"AMD Instinct MI200" Instruction Set Architecture

4 of 267

¥ set CDNA internal base-address and other configuration registers,
¥ specify the data domain on which the CDNA GPU is to operate,
¥ invalidate and flush caches on the CDNA GPU, and
¥ cause the CDNA GPU to begin execution of a program.

The CDNA driver program runs on the host.

The DPP array is the heart of the CDNA processor. The array is organized as a set of compute
unit pipelines, each independent from the others, that are designed to operate in parallel on
streams of floating-point or integer data. The compute unit pipelines can process data or,
through the memory controller, transfer data to, or from, memory. Computation in a compute unit
pipeline can be made conditional. Outputs written to memory can also be made conditional.

When it receives a request, the compute unit pipeline loads instructions and data from memory,
begins execution, and continues until the end of the kernel. As kernels are running, the CDNA
hardware automatically fetches instructions from memory into on-chip caches; CDNA software
plays no role in this. CDNA kernels can load data from off-chip memory into on-chip general-
purpose registers (GPRs) and caches.

The AMD CDNA devices can detect floating point exceptions and can generate interrupts. In
particular, they can detect IEEE floating-point exceptions in hardware; these can be recorded for
post-execution analysis. The software interrupts shown in the previous figure from the command
processor to the host represent hardware-generated interrupts for signaling command-
completion and related management functions.

The CDNA processor is designed to hide memory latency by keeping track of potentially
hundreds of work-items in different stages of execution, and by overlapping compute operations
with memory-access operations.

1.1. Terminology
Table 1. Basic Terms

Term Description

CDNA Processor The Graphics Core Next shader processor is a scalar and vector ALU capable of running
complex programs on behalf of a wavefront.

Dispatch A dispatch launches a 1D, 2D, or 3D grid of work to the CDNA processor array.

Workgroup A workgroup is a collection of wavefronts that have the ability to synchronize with each other
quickly; they also can share data through the Local Data Share.

Wavefront A collection of 64 work-items that execute in parallel on a single CDNA processor.

Work-item A single element of work: one element from the dispatch grid, or in graphics a pixel or vertex.

Literal Constant A 32-bit integer or float constant that is placed in the instruction stream.

Scalar ALU (SALU) The scalar ALU operates on one value per wavefront and manages all control flow.

"AMD Instinct MI200" Instruction Set Architecture

1.1. Terminology 5 of 267

Term Description

Vector ALU (VALU) The vector ALU maintains Vector GPRs that are unique for each work item and execute
arithmetic operations uniquely on each work-item.

Microcode format The microcode format describes the bit patterns used to encode instructions. Each
instruction is either 32 or 64 bits.

Instruction An instruction is the basic unit of the kernel. Instructions include: vector ALU, scalar ALU,
memory transfer, and control flow operations.

Quad A quad is a 2x2 group of screen-aligned pixels. This is relevant for sampling texture maps.

Texture Sampler (S#) A texture sampler is a 128-bit entity that describes how the vector memory system reads and
samples (filters) a texture map.

Texture Resource
(T#)

A texture resource descriptor describes an image in memory: address, data format, stride,
etc.

Buffer Resource (V#) A buffer resource descriptor describes a buffer in memory: address, data format, stride, etc.

"AMD Instinct MI200" Instruction Set Architecture

1.1. Terminology 6 of 267

Chapter 2. Program Organization
CDNA kernels are programs executed by the CDNA processor. Conceptually, the kernel is
executed independently on every work-item, but in reality the CDNA processor groups 64 work-
items into a wavefront, which executes the kernel on all 64 work-items in one pass.

The CDNA processor consists of:

¥ A scalar ALU, which operates on one value per wavefront (common to all work items).
¥ A vector ALU, which operates on unique values per work-item.
¥ Local data storage, which allows work-items within a workgroup to communicate and share

data.
¥ Scalar memory, which can transfer data between SGPRs and memory through a cache.
¥ Vector memory, which can transfer data between VGPRs and memory, including sampling

texture maps.

All kernel control flow is handled using scalar ALU instructions. This includes if/else, branches
and looping. Scalar ALU (SALU) and memory instructions work on an entire wavefront and
operate on up to two SGPRs, as well as literal constants.

Vector memory and ALU instructions operate on all work-items in the wavefront at one time. In
order to support branching and conditional execute, every wavefront has an EXECute mask that
determines which work-items are active at that moment, and which are dormant. Active work-
items execute the vector instruction, and dormant ones treat the instruction as a NOP. The
EXEC mask can be changed at any time by Scalar ALU instructions.

Vector ALU instructions can take up to three arguments, which can come from VGPRs, SGPRs,
or literal constants that are part of the instruction stream. They operate on all work-items
enabled by the EXEC mask. Vector compare and add with- carryout return a bit-per-work-item
mask back to the SGPRs to indicate, per work-item, which had a "true" result from the compare
or generated a carry-out.

Vector memory instructions transfer data between VGPRs and memory. Each work-item
supplies its own memory address and supplies or receives unique data. These instructions are
also subject to the EXEC mask.

2.1. Compute Shaders
Compute kernels (shaders) are generic programs that can run on the CDNA processor, taking
data from memory, processing it, and writing results back to memory. Compute kernels are
created by a dispatch, which causes the CDNA processors to run the kernel over all of the work-
items in a 1D, 2D, or 3D grid of data. The CDNA processor walks through this grid and
generates wavefronts, which then run the compute kernel. Each work-item is initialized with its
unique address (index) within the grid. Based on this index, the work-item computes the

"AMD Instinct MI200" Instruction Set Architecture

2.1. Compute Shaders 7 of 267

address of the data it is required to work on and what to do with the results.

2.2. Data Sharing
The AMD CDNA stream processors can share data between different work-items. Data sharing
can significantly boost performance. The figure below shows the memory hierarchy that is
available to each work-item.

Figure 2. Shared Memory Hierarchy

2.2.1. Local Data Share (LDS)

Each compute unit has a 64 kB memory space that enables low-latency communication
between work-items within a work-group, or the work-items within a wavefront; this is the local
data share (LDS). This memory is configured with 32 banks, each with 512 entries of 4 bytes.
The AMD CDNA processors use a 64 kB local data share (LDS) memory for each compute unit;
this enables 64 kB of low-latency bandwidth to the processing elements. The shared memory
contains 32 integer atomic units designed to enable fast, unordered atomic operations. This
memory can be used as a software cache for predictable re-use of data, a data exchange
machine for the work-items of a work-group, or as a cooperative way to enable efficient access
to off-chip memory.

"AMD Instinct MI200" Instruction Set Architecture

2.2. Data Sharing 8 of 267

2.2.2. Global Wave Sync (GDS/GWS)

The AMD CDNA devices contain a global synchronization unit capable of synchronizing
workgroups across the device.

2.3. Device Memory
The AMD CDNA devices offer several methods for access to off-chip memory from the
processing elements (PE) within each compute unit. On the primary read path, the device
consists of multiple channels of L2 read-only cache that provides data to an L1 cache for each
compute unit. Specific cache-less load instructions can force data to be retrieved from device
memory during an execution of a load clause. Load requests that overlap within the clause are
cached with respect to each other. The output cache is formed by two levels of cache: the first
for write-combining cache (collect scatter and store operations and combine them to provide
good access patterns to memory); the second is a read/write cache with atomic units that lets
each processing element complete unordered atomic accesses that return the initial value. Each
processing element provides the destination address on which the atomic operation acts, the
data to be used in the atomic operation, and a return address for the read/write atomic unit to
store the pre-op value in memory. Each store or atomic operation can be set up to return an
acknowledgment to the requesting PE upon write confirmation of the return value (pre-atomic op
value at destination) being stored to device memory.

This acknowledgment has two purposes:

¥ enabling a PE to recover the pre-op value from an atomic operation by performing a cache-
less load from its return address after receipt of the write confirmation acknowledgment,
and

¥ enabling the system to maintain a relaxed consistency model.

Each scatter write from a given PE to a given memory channel maintains order. The
acknowledgment enables one processing element to implement a fence to maintain serial
consistency by ensuring all writes have been posted to memory prior to completing a
subsequent write. In this manner, the system can maintain a relaxed consistency model
between all parallel work-items operating on the system.

"AMD Instinct MI200" Instruction Set Architecture

2.3. Device Memory 9 of 267

Chapter 3. Kernel State
This chapter describes the kernel states visible to the shader program.

3.1. State Overview
The table below shows all of the hardware states readable or writable by a shader program.

Table 2. Readable and Writable Hardware States

Abbrev. Name Size
(bits)

Description

PC Program Counter 48 Points to the memory address of the next shader
instruction to execute.

V0-V255 VGPR 32 Vector general-purpose register ("architectural
VGPRs").

AV0-AV255 VGPR 32 Matrix Accumulation Vector general-purpose register.

S0-S103 SGPR 32 Vector general-purpose register.

LDS Local Data Share 64kB Local data share is a scratch RAM with built-in
arithmetic capabilities that allow data to be shared
between threads in a workgroup.

EXEC Execute Mask 64 A bit mask with one bit per thread, which is applied to
vector instructions and controls that threads execute
and that ignore the instruction.

EXECZ EXEC is zero 1 A single bit flag indicating that the EXEC mask is all
zeros.

VCC Vector Condition Code 64 A bit mask with one bit per thread; it holds the result
of a vector compare operation.

VCCZ VCC is zero 1 A single bit-flag indicating that the VCC mask is all
zeros.

SCC Scalar Condition Code 1 Result from a scalar ALU comparison instruction.

FLAT_SCRATCH Flat scratch address 64 The base address of scratch memory.

XNACK_MASK Address translation failure. 64 Bit mask of threads that have failed their address
translation.

STATUS Status 32 Read-only shader status bits.

MODE Mode 32 Writable shader mode bits.

M0 Memory Reg 32 A temporary register that has various uses, including
GPR indexing and bounds checking.

TRAPSTS Trap Status 32 Holds information about exceptions and pending
traps.

TBA Trap Base Address 64 Holds the pointer to the current trap handler program.

"AMD Instinct MI200" Instruction Set Architecture

3.1. State Overview 10 of 267

Abbrev. Name Size
(bits)

Description

TMA Trap Memory Address 64 Temporary register for shader operations. For
example, can hold a pointer to memory used by the
trap handler.

TTMP0-TTMP15 Trap Temporary SGPRs 32 16 SGPRs available only to the Trap Handler for
temporary storage.

VMCNT Vector memory instruction
count

6 Counts the number of VMEM instructions issued but
not yet completed.

EXPCNT Export Count 3 Counts the number of GDS instructions issued but
not yet completed. Also counts VMEM writes that
have not yet sent their write-data to the TC.

LGKMCNT LDS, GDS, Constant and
Message count

4 Counts the number of LDS, GDS, constant-fetch
(scalar memory read), and message instructions
issued but not yet completed.

3.2. Program Counter (PC)
The program counter (PC) is a byte address pointing to the next instruction to execute. When a
wavefront is created, the PC is initialized to the first instruction in the program.

The PC interacts with three instructions: S_GET_PC, S_SET_PC, S_SWAP_PC. These transfer
the PC to, and from, an even-aligned SGPR pair.

Branches jump to (PC_of_the_instruction_after_the_branch + offset). The shader program
cannot directly read from, or write to, the PC. Branches, GET_PC and SWAP_PC, are PC-
relative to the next instruction, not the current one. S_TRAP saves the PC of the S_TRAP
instruction itself.

3.3. EXECute Mask
The Execute mask (64-bit) determines which threads in the vector are executed:
1 = execute, 0 = do not execute.

EXEC can be read from, and written to, through scalar instructions; it also can be written as a
result of a vector-ALU compare. This mask affects vector-ALU, vector-memory, LDS, and GDS
instructions. It does not affect scalar execution or branches.

A helper bit (EXECZ) can be used as a condition for branches to skip code when EXEC is zero.

"AMD Instinct MI200" Instruction Set Architecture

3.2. Program Counter (PC) 11 of 267

!
This GPU does no optimization when EXEC = 0. The shader hardware
executes every instruction, wasting instruction issue bandwidth. Use
CBRANCH or VSKIP to rapidly skip over code when it is likely that the EXEC
mask is zero.

3.4. Status registers
Status register fields can be read, but not written to, by the shader. These bits are initialized at
wavefront-creation time. The table below lists and briefly describes the status register fields.

Table 3. Status Register Fields

Field Bit
Position

Description

SCC 1 Scalar condition code. Used as a carry-out bit. For a comparison instruction,
this bit indicates failure or success. For logical operations, this is 1 if the
result was non-zero.

SPI_PRIO 2:1 Wavefront priority set by the shader processor interpolator (SPI) when the
wavefront is created. See the S_SETPRIO instruction (page 12-49) for
details. 0 is lowest, 3 is highest priority.

WAVE_PRIO 4:3 Wavefront priority set by the shader program. See the S_SETPRIO
instruction (page 12-49) for details.

PRIV 5 Privileged mode. Can only be active when in the trap handler. Gives write
access to the TTMP, TMA, and TBA registers.

TRAP_EN 6 Indicates that a trap handler is present. When set to zero, traps are not
taken.

EXECZ 9 Exec mask is zero.

VCCZ 10 Vector condition code is zero.

IN_TG 11 Wavefront is a member of a work-group of more than one wavefront.

IN_BARRIER 12 Wavefront is waiting at a barrier.

HALT 13 Wavefront is halted or scheduled to halt. HALT can be set by the host
through wavefront-control messages, or by the shader. This bit is ignored
while in the trap handler (PRIV = 1); it also is ignored if a host-initiated trap
is received (request to enter the trap handler).

TRAP 14 Wavefront is flagged to enter the trap handler as soon as possible.

VALID 16 Wavefront is active (has been created and not yet ended).

ECC_ERR 17 An ECC error has occurred.

PERF_EN 19 Performance counters are enabled for this wavefront.

COND_DBG_USER 20 Conditional debug indicator for user mode

COND_DBG_SYS 21 Conditional debug indicator for system mode.

ALLOW_REPLAY 22 Indicates that ATC replay is enabled. terminating.

"AMD Instinct MI200" Instruction Set Architecture

3.4. Status registers 12 of 267

3.5. Mode register
Mode register fields can be read from, and written to, by the shader through scalar instructions.
The table below lists and briefly describes the mode register fields.

Table 4. Mode Register Fields

Field Bit
Position

Description

FP_ROUND 3:0 [1:0] Single precision round mode. [3:2] Double/Half precision round mode.
Round Modes: 0=nearest even, 1= +infinity, 2= -infinity, 3= toward zero.

FP_DENORM 7:4 [1:0] Single precision denormal mode. [3:2] Double/Half precision denormal
mode. Denorm modes:
0 = flush input and output denorms.
1 = allow input denorms, flush output denorms.
2 = flush input denorms, allow output denorms.
3 = allow input and output denorms.

DX10_CLAMP 8 Used by the vector ALU to force DX10-style treatment of NaNs: when set,
clamp NaN to zero; otherwise, pass NaN through.

IEEE 9 Floating point opcodes that support exception flag gathering quiet and
propagate signaling NaN inputs per IEEE 754-2008. Min_dx10 and max_dx10
become IEEE 754-2008 compliant due to signaling NaN propagation and
quieting.

LOD_CLAMPED 10 Sticky bit indicating that one or more texture accesses had their LOD
clamped.

DEBUG 11 Forces the wavefront to jump to the exception handler after each instruction is
executed (but not after ENDPGM). Only works if TRAP_EN = 1.

EXCP_EN 18:12 Enable mask for exceptions. Enabled means if the exception occurs and
TRAP_EN==1, a trap is taken.
[12] : invalid.
[13] : inputDenormal.
[14] : float_div0.
[15] : overflow.
[16] : underflow.
[17] : inexact.
[18] : int_div0.
[19] : address watch
[20] : memory violation

FP16_OVFL 23 If set, an overflowed FP16 result is clamped to +/- MAX_FP16, regardless of
round mode, while still preserving true INF values.

POPS_PACKER0 24 1 = this wave is associated with packer 0. User shader must set this to
!PackerID from the POPS initialized SGPR (load_collision_waveID), or zero if
not using POPS.

POPS_PACKER1 25 1 = this wave is associated with packer 1. User shader must set this to
PackerID from the POPS initialized SGPR (load_collision_waveID), or zero if
not using POPS.

DISABLE_PERF 26 1 = disable performance counting for this wave

"AMD Instinct MI200" Instruction Set Architecture

3.5. Mode register 13 of 267

Field Bit
Position

Description

GPR_IDX_EN 27 GPR index enable.

VSKIP 28 0 = normal operation. 1 = skip (do not execute) any vector instructions: valu,
vmem, lds, gds. "Skipping" instructions occurs at high-speed (10 wavefronts
per clock cycle can skip one instruction). This is much faster than issuing and
discarding instructions.

CSP 31:29 Conditional branch stack pointer.

3.6. GPRs and LDS
This section describes how GPR and LDS space is allocated to a wavefront, as well as how out-
of-range and misaligned accesses are handled.

3.6.1. Out-of-Range behavior

This section defines the behavior when a source or destination GPR or memory address is
outside the legal range for a wavefront.

Out-of-range can occur through GPR-indexing or bad programming. It is illegal to index from
one register type into another (for example: SGPRs into trap registers or inline constants). It is
also illegal to index within inline constants.

The following describe the out-of-range behavior for various storage types.

¥ SGPRs
! Source or destination out-of-range = (sgpr < 0 || (sgpr >= sgpr_size)).
! Source out-of-range: returns the value of SGPR0 (not the value 0).
! Destination out-of-range: instruction writes no SGPR result.

¥ VGPRs
! Similar to SGPRs. It is illegal to index from SGPRs into VGPRs, or vice versa.
! Out-of-range = (vgpr < 0 || (vgpr >= vgpr_size))
! If a source VGPR is out of range, VGPR0 is used.
! If a destination VGPR is out-of-range, the instruction is ignored (treated as an NOP).

¥ LDS
! If the LDS-ADDRESS is out-of-range (addr < 0 or >= (MIN(lds_size, m0)):

" Writes out-of-range are discarded; it is undefined if SIZE is not a multiple of write-
data-size.

" Reads return the value zero.
! If any source-VGPR is out-of-range, use the VGPR0 value is used.
! If the dest-VGPR is out of range, nullify the instruction (issue with exec=0)

"AMD Instinct MI200" Instruction Set Architecture

3.6. GPRs and LDS 14 of 267

¥ Memory, LDS, and GDS: Reads and atomics with returns.
! If any source VGPR or SGPR is out-of-range, the data value is undefined.
! If any destination VGPR is out-of-range, the operation is nullified by issuing the

instruction as if the EXEC mask were cleared to 0.
" This out-of-range check must check all VGPRs that can be returned (for example:

VDST to VDST+3 for a BUFFER_LOAD_DWORDx4).
" This check must also include the extra PRT (partially resident texture) VGPR and

nullify the fetch if this VGPR is out-of-range, no matter whether the texture system
actually returns this value or not.

" Atomic operations with out-of-range destination VGPRs are nullified: issued, but
with exec mask of zero.

Instructions with multiple destinations (for example: V_ADDC): if any destination is out-of-range,
no results are written.

3.6.2. SGPR Allocation and storage

A wavefront can be allocated 16 to 102 SGPRs, in units of 16 GPRs (Dwords). These are
logically viewed as SGPRs 0-101. The VCC is physically stored as part of the wavefrontÕs
SGPRs in the highest numbered two SGPRs (SGPR 106 and 107; the source/destination VCC
is an alias for those two SGPRs). When a trap handler is present, 16 additional SGPRs are
reserved after VCC to hold the trap addresses, as well as saved-PC and trap-handler temps.
These all are privileged (cannot be written to unless privilege is set). Note that if a wavefront
allocates 16 SGPRs, 2 SGPRs are typically used as VCC, the remaining 14 are available to the
shader. Shader hardware does not prevent use of all 16 SGPRs.

3.6.3. SGPR Alignment

Even-aligned SGPRs are required in the following cases.

¥ When 64-bit data is used. This is required for moves to/from 64-bit registers, including the
PC.

¥ When scalar memory reads that the address-base comes from an SGPR-pair (either in
SGPR).

Quad-alignment is required for the data-GPR when a scalar memory read returns four or more
Dwords. When a 64-bit quantity is stored in SGPRs, the LSBs are in SGPR[n], and the MSBs
are in SGPR[n+1].

3.6.4. VGPR Allocation and Alignment

VGPRs are allocated in groups of eight Dwords. Operations using pairs of VGPRs (for example:
double-floats) have no alignment restrictions. Physically, allocations of VGPRs can wrap around

"AMD Instinct MI200" Instruction Set Architecture

3.6. GPRs and LDS 15 of 267

the VGPR memory pool.

VGPRs are allocated out of two pools: regular VGPRs and accumulation VGPRs. Accumulation
VGPRs are used with matrix VALU instructions, and can also be loaded directly from memory. A
wave may have up to 512 total VGPRs, 256 of each type. When a wave has fewer than 512
total VGPRs, the number of each type is flexible - it is not required to be equal numbers of both
types.

Instructions which operate on 64-bit data must use aligned (i.e. even) VGPRs. This applies to
ALU and memory instructions. GWS instructions must also be even-aligned.

Compute shaders have VGPR0 initialized with the X, Y and Z index within the workgroup: {
2Õb00, Z, Y, X }.

3.6.5. LDS Allocation and Clamping

LDS is allocated per work-group or per-wavefront when work-groups are not in use. LDS space
is allocated to a work-group or wavefront in contiguous blocks of 128 Dwords on 128-Dword
alignment. LDS allocations do not wrap around the LDS storage. All accesses to LDS are
restricted to the space allocated to that wavefront/work-group.

Clamping of LDS reads and writes is controlled by two size registers, which contain values for
the size of the LDS space allocated by SPI to this wavefront or work-group, and a possibly
smaller value specified in the LDS instruction (size is held in M0). The LDS operations use the
smaller of these two sizes to determine how to clamp the read/write addresses.

3.7. M0 Memory Descriptor
There is one 32-bit M0 register per wavefront, which can be used for:

¥ Local Data Share (LDS)
! Interpolation: holds { 1Õb0, new_prim_mask[15:1], parameter_offset[15:0] } // in bytes
! LDS direct-read offset and data type: { 13Õb0, DataType[2:0], LDS_address[15:0] } //

addr in bytes
! LDS addressing for Memory/Vfetch # LDS: {16Õh0, lds_offset[15:0]} // in bytes

¥ Global Wave Sync (GWS)
! { base[5:0], 16Õh0}

¥ Indirect GPR addressing for both vector and scalar instructions. M0 is an unsigned index.
¥ Send-message value. EMIT/CUT use M0 and EXEC as the send-message data.

"AMD Instinct MI200" Instruction Set Architecture

3.7. M0 Memory Descriptor 16 of 267

3.8. SCC: Scalar Condition code
Most scalar ALU instructions set the Scalar Condition Code (SCC) bit, indicating the result of the
operation.

Compare operations: 1 = true
Arithmetic operations: 1 = carry out
Bit/logical operations: 1 = result was not zero
Move: does not alter SCC

The SCC can be used as the carry-in for extended-precision integer arithmetic, as well as the
selector for conditional moves and branches.

3.9. Vector Compares: VCC and VCCZ
Vector ALU comparisons set the Vector Condition Code (VCC) register (1=pass, 0=fail). Also,
vector compares have the option of setting EXEC to the VCC value.

There is also a VCC summary bit (vccz) that is set to 1 when the VCC result is zero. This is
useful for early-exit branch tests. VCC is also set for selected integer ALU operations (carry-
out).

Vector compares have the option of writing the result to VCC (32-bit instruction encoding) or to
any SGPR (64-bit instruction encoding). VCCZ is updated every time VCC is updated: vector
compares and scalar writes to VCC.

The EXEC mask determines which threads execute an instruction. The VCC indicates which
executing threads passed the conditional test, or which threads generated a carry-out from an
integer add or subtract.

V_CMP_* ! VCC[n] = EXEC[n] & (test passed for thread[n])

VCC is fully written; there are no partial mask updates.

!
VCC physically resides in the SGPR register file, so when an instruction
sources VCC, that counts against the limit on the total number of SGPRs that
can be sourced for a given instruction. VCC physically resides in the highest
two user SGPRs.

Shader Hazard with VCC The user/compiler must prevent a scalar-ALU write to the SGPR
holding VCC, immediately followed by a conditional branch using VCCZ. The hardware cannot

"AMD Instinct MI200" Instruction Set Architecture

3.8. SCC: Scalar Condition code 17 of 267

detect this, and inserts the one required wait state (hardware does detect it when the SALU
writes to VCC, it only fails to do this when the SALU instruction references the SGPRs that
happen to hold VCC).

3.10. Trap and Exception registers
Each type of exception can be enabled or disabled independently by setting, or clearing, bits in
the TRAPSTS registerÕs EXCP_EN field. This section describes the registers which control and
report kernel exceptions.

All Trap temporary SGPRs (TTMP*) are privileged for writes - they can be written only when in
the trap handler (status.priv = 1). When not privileged, writes to these are ignored. TMA and
TBA are read-only; they can be accessed through S_GETREG_B32.

When a trap is taken (either user initiated, exception or host initiated), the shader hardware
generates an S_TRAP instruction. This loads trap information into a pair of SGPRS:

{TTMP1, TTMP0} = {3'h0, pc_rewind[3:0], HT[0],trapID[7:0], PC[47:0]}.

HT is set to one for host initiated traps, and zero for user traps (s_trap) or exceptions. TRAP_ID
is zero for exceptions, or the user/host trapID for those traps. When the trap handler is entered,
the PC of the faulting instruction will be: (PC - PC_rewind*4).

STATUS . TRAP_EN - This bit indicates to the shader whether or not a trap handler is present.
When one is not present, traps are not taken, no matter whether theyÕre floating point, user-, or
host-initiated traps. When the trap handler is present, the wavefront uses an extra 16 SGPRs for
trap processing. If trap_en == 0, all traps and exceptions are ignored, and s_trap is converted
by hardware to NOP.

MODE . EXCP_EN[8:0] - Floating point exception enables. Defines which exceptions and
events cause a trap.

Bit Exception

0 Invalid

1 Input Denormal

2 Divide by zero

3 Overflow

4 Underflow

5 Inexact

6 Integer divide by zero

7 Address Watch - TC (L1) has witnessed a thread access to an
'address of interest'

"AMD Instinct MI200" Instruction Set Architecture

3.10. Trap and Exception registers 18 of 267

3.10.1. Trap Status register

The trap status register records previously seen traps or exceptions. It can be read and written
by the kernel.

Table 5. Exception Field Bits

Field Bits Description

EXCP 8:0 Status bits of which exceptions have occurred. These bits are sticky and
accumulate results until the shader program clears them. These bits are
accumulated regardless of the setting of EXCP_EN. These can be read or written
without shader privilege. Bit Exception 0 invalid
1 Input Denormal
2 Divide by zero
3 overflow
4 underflow
5 inexact
6 integer divide by zero
7 address watch
8 memory violation

SAVECTX 10 A bit set by the host command indicating that this wave must jump to its trap
handler and save its context. This bit must be cleared by the trap handler using
S_SETREG. Note - a shader can set this bit to 1 to cause a save-context trap,
and due to hardware latency the shader may execute up to 2 additional
instructions before taking the trap.

ILLEGAL_INST 11 An illegal instruction has been detected.

ADDR_WATCH1-3 14:12 Indicates that address watch 1, 2, or 3 has been hit. Bit 12 is address watch 1; bit
13 is 2; bit 14 is 3.

EXCP_CYCLE 21:16 When a float exception occurs, this tells the trap handler on which cycle the
exception occurred on. 0-3 for normal float operations, 0-7 for double float add,
and 0-15 for double float muladd or transcendentals. This register records the
cycle number of the first occurrence of an enabled (unmasked) exception.
EXCP_CYCLE[1:0] Phase: threads 0-15 are in phase 0, 48-63 in phase 3.
EXCP_CYCLE[3:2] Multi-slot pass.
EXCP_CYCLE[5:4] Hybrid pass: used for machines running at lower rates.

DP_RATE 31:29 Determines how the shader interprets the TRAP_STS.cycle. Different Vector
Shader Processors (VSP) process instructions at different rates.

3.11. Memory Violations
A Memory Violation is reported from:

¥ LDS alignment error.
¥ Memory read/write/atomic alignment error.
¥ Flat access where the address is invalid (does not fall in any aperture).
¥ Write to a read-only surface.
¥ GDS alignment or address range error.

"AMD Instinct MI200" Instruction Set Architecture

3.11. Memory Violations 19 of 267

¥ GWS operation aborted (semaphore or barrier not executed).

Memory violations are not reported for instruction or scalar-data accesses.

Memory Buffer to LDS does NOT return a memory violation if the LDS address is out of range,
but masks off EXEC bits of threads that would go out of range.

When a memory access is in violation, the appropriate memory (LDS or TC) returns MEM_VIOL
to the wave. This is stored in the waveÕs TRAPSTS.mem_viol bit. This bit is sticky, so once set
to 1, it remains at 1 until the user clears it.

There is a corresponding exception enable bit (EXCP_EN.mem_viol). If this bit is set when the
memory returns with a violation, the wave jumps to the trap handler.

Memory violations are not precise. The violation is reported when the LDS or TC processes the
address; during this time, the wave may have processed many more instructions. When a
mem_viol is reported, the Program Counter saved is that of the next instruction to execute; it
has no relationship the faulting instruction.

3.12. Hardware ID Registers
The values below indicate where a wave is currently execution. It is not safe to rely on these
values as they may change over the lifetime of a wave.

Table 6. Hardware ID (HW_ID)

Field Bits Description

WAVE_ID 3:0 Wave buffer slot number

SIMD_ID 5:4 SIMD which the wave is assigned to within the CU

PIPE_ID 7:6 Pipeline from which the wave was dispatched

CU_ID 11:8 Compute Unit the wave is assigned to

SH_ID 12 Shader Array (within an SE) the wave is assigned to

SE_ID 14:13 Shader Engine the wave is assigned to

TG_ID 19:16 Thread-group ID

VM_ID 23:20 Virtual Memory ID

QUEUE_ID 26:24 Queue from which this wave was dispatched

STATE_ID 29:27 State ID (UNUSED)

ME_ID 31:30 Micro-engine ID

"AMD Instinct MI200" Instruction Set Architecture

3.12. Hardware ID Registers 20 of 267

Chapter 4. Program Flow Control
All program flow control is programmed using scalar ALU instructions. This includes loops,
branches, subroutine calls, and traps. The program uses SGPRs to store branch conditions and
loop counters. Constants can be fetched from the scalar constant cache directly into SGPRs.

4.1. Program Control
The instructions in the table below control the priority and termination of a shader program, as
well as provide support for trap handlers.

Table 7. Control Instructions

Instructions Description

S_ENDPGM Terminates the wavefront. It can appear anywhere in the kernel and can appear multiple
times.

S_ENDPGM_SAVED Terminates the wavefront due to context save. It can appear anywhere in the kernel and can
appear multiple times.

S_NOP Does nothing; it can be repeated in hardware up to eight times.

S_TRAP Jumps to the trap handler.

S_RFE Returns from the trap handler

S_SETPRIO Modifies the priority of this wavefront: 0=lowest, 3 = highest.

S_SLEEP Causes the wavefront to sleep for 64 - 8128 clock cycles.

S_SENDMSG Sends a message (typically an interrupt) to the host CPU.

4.2. Branching
Branching is done using one of the following scalar ALU instructions.

Table 8. Branch Instructions

Instructions Description

S_BRANCH Unconditional branch.

S_CBRANCH_<test> Conditional branch. Branch only if <test> is true. Tests are VCCZ, VCCNZ,
EXECZ, EXECNZ, SCCZ, and SCCNZ.

S_CBRANCH_CDBGSYS Conditional branch, taken if the COND_DBG_SYS status bit is set.

S_CBRANCH_CDBGUSER Conditional branch, taken if the COND_DBG_USER status bit is set.

S_CBRANCH_CDBGSYS_AND_US
ER

Conditional branch, taken only if both COND_DBG_SYS and
COND_DBG_USER are set.

S_SETPC Directly set the PC from an SGPR pair.

"AMD Instinct MI200" Instruction Set Architecture

4.1. Program Control 21 of 267

Instructions Description

S_SWAPPC Swap the current PC with an address in an SGPR pair.

S_GETPC Retrieve the current PC value (does not cause a branch).

S_CBRANCH_FORK and
S_CBRANCH_JOIN

Conditional branch for complex branching.

S_SETVSKIP Set a bit that causes all vector instructions to be ignored. Useful alternative
to branching.

S_CALL_B64 Jump to a subroutine, and save return address. SGPR_pair = PC+4; PC =
PC+4+SIMM16*4.

For conditional branches, the branch condition can be determined by either scalar or vector
operations. A scalar compare operation sets the Scalar Condition Code (SCC), which then can
be used as a conditional branch condition. Vector compare operations set the VCC mask, and
VCCZ or VCCNZ then can be used to determine branching.

4.3. Workgroups
Work-groups are collections of wavefronts running on the same compute unit which can
synchronize and share data. Up to 16 wavefronts (1024 work-items) can be combined into a
work-group. When multiple wavefronts are in a workgroup, the S_BARRIER instruction can be
used to force each wavefront to wait until all other wavefronts reach the same instruction; then,
all wavefronts continue. Any wavefront can terminate early using S_ENDPGM, and the barrier is
considered satisfied when the remaining live waves reach their barrier instruction.

4.4. Data Dependency Resolution
Shader hardware resolves most data dependencies, but a few cases must be explicitly handled
by the shader program. In these cases, the program must insert S_WAITCNT instructions to
ensure that previous operations have completed before continuing.

The shader has three counters that track the progress of issued instructions. S_WAITCNT waits
for the values of these counters to be at, or below, specified values before continuing.

These allow the shader writer to schedule long-latency instructions, execute unrelated work,
and specify when results of long-latency operations are needed.

Instructions of a given type return in order, but instructions of different types can complete out-
of-order. For example, both GDS and LDS instructions use LGKM_cnt, but they can return out-
of-order.

¥ VM_CNT: Vector memory count.
Determines when memory reads have returned data to VGPRs, or memory writes have
completed.

"AMD Instinct MI200" Instruction Set Architecture

4.3. Workgroups 22 of 267

! Incremented every time a vector-memory read or write (MIMG, MUBUF, or MTBUF
format) instruction is issued.

! Decremented for reads when the data has been written back to the VGPRs, and for
writes when the data has been written to the L2 cache. Ordering: Memory reads and
writes return in the order they were issued, including mixing reads and writes.

¥ LGKM_CNT: (LDS, GDS, (K)constant, (M)essage) Determines when one of these low-
latency instructions have completed.

! Incremented by 1 for every LDS or GDS instruction issued, as well as by Dword-count
for scalar-memory reads. For example, s_memtime counts the same as an
s_load_dwordx2.

! Decremented by 1 for LDS/GDS reads or atomic-with-return when the data has been
returned to VGPRs.

! Incremented by 1 for each S_SENDMSG issued. Decremented by 1 when message is
sent out.

! Decremented by 1 for LDS/GDS writes when the data has been written to LDS/GDS.
! Decremented by 1 for each Dword returned from the data-cache (SMEM).

Ordering:
" Instructions of different types are returned out-of-order.
" Instructions of the same type are returned in the order they were issued, except

scalar-memory-reads, which can return out-of-order (in which case only
S_WAITCNT 0 is the only legitimate value).

¥ EXP_CNT: VGPR-export count.
Determines when data has been read out of the VGPR and sent to GDS, at which time it is
safe to overwrite the contents of that VGPR.

! Incremented when an GDS instruction is issued from the wavefront buffer.
! Decremented for GDS when the last cycle of the GDS instruction is granted and

executed (VGPRs read out).

4.5. Manually Inserted Wait States (NOPs)
The hardware does not check for the following dependencies; they must be resolved by
inserting NOPs or independent instructions.

Table 9. Required Software-inserted Wait States

First Instruction Second Instruction Wait Notes

S_SETREG <*> S_GETREG <same reg> 2

S_SETREG <*> S_SETREG <same reg> 2

SET_VSKIP S_GETREG MODE 2 Reads VSKIP from MODE.

S_SETREG MODE.vskip any vector op 2 Requires two nops or non-vector
instructions.

"AMD Instinct MI200" Instruction Set Architecture

4.5. Manually Inserted Wait States (NOPs) 23 of 267

First Instruction Second Instruction Wait Notes

VALU that sets VCC or EXEC VALU that uses EXECZ or
VCCZ as a data source

5

VALU writes SGPR/VCC (readlane,
cmp, add/sub, div_scale)

V_{READ,WRITE}LANE using
that SGPR/VCC as the lane
select

4

VALU writes VCC (including
v_div_scale)

V_DIV_FMAS 4

FLAT_STORE_X3
FLAT_STORE_X4
FLAT_ATOMIC_{F}CMPSWAP_X2
BUFFER_STORE_DWORD_X3
BUFFER_STORE_DWORD_X4
BUFFER_STORE_FORMAT_XYZ
BUFFER_STORE_FORMAT_XYZW
BUFFER_ATOMIC_{F}CMPSWAP_X2
IMAGE_STORE_* > 64 bits
IMAGE_ATOMIC_{F}CMPSWAP > +
64bits

Write VGPRs holding writedata
from those instructions.

1 BUFFER_STORE_* operations
that use an SGPR for "offset" do
not require any wait states.
IMAGE_STORE_* and
IMAGE_{F}CMPSWAP* ops with
more than two DMASK bits set
require this one wait state. Ops
that use a 256-bit T# do not
need a wait state.

VALU writes SGPR VMEM reads that SGPR 5 Hardware assumes that there is
no dependency here. If the
VALU writes the SGPR that is
used by a VMEM, the user must
add five wait states.

SALU writes M0 GDS, S_SENDMSG 1

VALU writes VGPR VALU DPP reads that VGPR 2

VALU writes EXEC VALU DPP op 5 ALU does not forward EXEC to
DPP.

Mixed use of VCC: alias vs
SGPR#
v_readlane, v_readfirstlane
v_cmp
v_add*i/u
v_sub*_i/u
v_div_scale* (writes vcc)

VALU which reads VCC as a
constant (not as a carry-in which
is 0 wait states).

1 VCC can be accessed by name
or by the logical SGPR which
holds VCC. The data
dependency check logic does
not understand that these are
the same register and do not
prevent races.

S_SETREG TRAPSTS RFE, RFE_restore 1

SALU writes M0 LDS "add-TID" instruction,
buffer_store_LDS_dword,
scratch or global with LDS = 1 or
LDS_direct

1

SALU writes M0 S_MOVEREL 1

4.6. Arbitrary Divergent Control Flow
In the CDNA architecture, conditional branches are handled in one of the following ways.

"AMD Instinct MI200" Instruction Set Architecture

4.6. Arbitrary Divergent Control Flow 24 of 267

1. S_CBRANCH This case is used for simple control flow, where the decision to take a branch
is based on a previous compare operation. This is the most common method for conditional
branching.

2. S_CBRANCH_I/G_FORK and S_CBRANCH_JOIN This method, intended for complex,
irreducible control flow graphs, is described in the rest of this section. The performance of
this method is lower than that for S_CBRANCH on simple flow control; use it only when
necessary.

Conditional Branch (CBR) graphs are grouped into self-contained code blocks, denoted by
FORK at the entrance point, and JOIN and the exit point. The shader compiler must add these
instructions into the code. This method uses a six-deep stack and requires three SGPRs for
each fork/join block. Fork/Join blocks can be hierarchically nested to any depth (subject to
SGPR requirements); they also can coexist with other conditional flow control or computed
jumps.

Figure 3. Example of Complex Control Flow Graph

The register requirements per wavefront are:

¥ CSP [2:0] - control stack pointer.
¥ Six stack entries of 128-bits each, stored in SGPRS: { exec[63:0], PC[47:2] }

This method compares how many of the 64 threads go down the PASS path instead of the FAIL
path; then, it selects the path with the fewer number of threads first. This means at most 50% of
the threads are active, and this limits the necessary stack depth to Log264 = 6.

The following pseudo-code shows the details of CBRANCH Fork and Join operations.

"AMD Instinct MI200" Instruction Set Architecture

4.6. Arbitrary Divergent Control Flow 25 of 267

