

Flang - the Fortran Compiler

 Publication # 57225 Revision: 3.1
 Issue Date: July 2021

© 2021 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice. While

every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions

and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced

Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the

contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,

merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software

or other products described herein. No license, including implied or arising by estoppel, to any intellectual property

rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are

as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale. Any

unauthorized copying, alteration, distribution, transmission, performance, display or other use of this material is

prohibited.

Trademarks

AMD, the AMD Arrow logo, EPYC™, Ryzen™, and Ryzen™ Threadripper™ and combinations thereof are

trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification

purposes only and may be trademarks of their respective companies.

Dolby is a trademark of Dolby Laboratories.

HDMI is a trademark of HDMI Licensing, LLC.

HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.

Microsoft, Windows, Windows Vista, and DirectX are registered trademarks of Microsoft Corporation in the US

and/or other countries.

MMX is a trademark of Intel Corporation.

OpenCL is a trademark of Apple Inc. used by permission by Khronos.

PCIe is a registered trademark of PCI-Special Interest Group (PCI-SIG).

USB Type-C® and USB-C® are registered trademarks of USB Implementers Forum.

Reverse engineering or disassembly is prohibited.

USE OF THIS PRODUCT IN ANY MANNER THAT COMPLIES WITH THE MPEG ACTUAL OR DE FACTO

VIDEO AND/OR AUDIO STANDARDS IS EXPRESSLY PROHIBITED WITHOUT ALL NECESSARY

LICENSES UNDER APPLICABLE PATENTS. SUCH LICENSES MAY BE ACQUIRED FROM VARIOUS

THIRD PARTIES INCLUDING, BUT NOT LIMITED TO, IN THE MPEG PATENT PORTFOLIO, WHICH

LICENSE IS AVAILABLE FROM MPEG LA, L.L.C., 6312 S. FIDDLERS GREEN CIRCLE, SUITE 400E,

GREENWOOD VILLAGE, COLORADO 80111.

57225 Rev. 3.1 July 2021 Flang - the Fortran Compiler

 Contents 3

Contents

Contents .. 3

List of Tables .. 4

Revision History ... 5

Chapter 1 Synopsis ... 6

1.1 Description ... 6

1.1.1 IEEE-754 Support .. 6

1.1.2 Pragma Directives .. 6

1.1.3 Code Generation and Optimization ... 9

1.2 Options ... 10

1.2.1 Target Selection ... 11

1.2.2 Code Generation .. 12

1.2.3 Deprecated Options .. 18

1.2.4 Driver ... 18

Flang - the Fortran Compiler 57225 Rev. 3.1 July 2021

4 List of Tables

List of Tables

Table 1. Flang-specific Compiler Options .. 10

Table 2. Target Selection Options ... 11

Table 3. Code Generation Options .. 12

57225 Rev. 3.1 July 2021 Flang - the Fortran Compiler

 Revision History 5

Revision History

Date Revision Description

July 2021 3.1 • Updated section 1.2.2.

• Added section 1.1.2.

March 2021 3.0 Initial version.

Flang - the Fortran Compiler 57225 Rev. 3.1 July 2021

6 Synopsis Chapter 1

Chapter 1 Synopsis

Flang [options] filename ...

1.1 Description

Flang is the Fortran front-end designed for an integration with LLVM and is suitable for

interoperability with Clang/LLVM. Flang consists of the following two components:

• flang1 will be invoked by front-end driver which is responsible for transforming the Fortran

programs into tokens, then the parser transforms these tokens into Abstract Syntax Tree

(AST). This AST is then transformed into canonical form, which is used to generate ILM

code.

• flang2 takes up this ILM code and transforms it into ILI, which is then optimized by the

internal optimizer. The optimized ILI is then transformed into LLVM IR. Then, the front-end

driver transfers this LLVM IR to LLVM optimizer for optimization and target code

generation.

Note: AOCC Flang extends the GitHub version with enhancements and stability.

1.1.1 IEEE-754 Support

The Flang compiler does not conform to IEEE-754 specifications when -Ofast or -ffast-math

options are specified. The compiler will enable a range of optimizations that provide faster

mathematical operations under -Ofast and -ffast-math mode of compilation.

1.1.2 Pragma Directives

1.1.2.1 NOINLINE

This directive instructs the compiler not to inline the specified routine.

!DIR$ NOINLINE

To use this directive, compiler optimization level should be in -O0 to -O3. The NOINLINE

directive overrides the compiler options -finline-functions and -fno-inline-functions.

https://github.com/flang-compiler/flang.git

57225 Rev. 3.1 July 2021 Flang - the Fortran Compiler

 Chapter 1 Synopsis 7

Example:

!DIR$ NOINLINE
SUBROUTINE func_noinline
 INTEGER :: i
 do i = 0, 5
 WRITE(*, *) "Hello World"
 end do
END SUBROUTINE func_noinline

PROGRAM test_inline
 IMPLICIT NONE
 call func_noinline
END PROGRAM test_inline

1.1.2.2 FORCEINLINE

This directive instructs compiler to always inline the specified routine

!DIR$ FORCEINLINE

To use this directive, compiler optimization level should be in -O0 to -O3. The FORCEINLINE

directive overrides the compiler options -finline-functions and -fno-inline-functions.

Example:

!DIR$ FORCEINLINE
SUBROUTINE func_forceinline
 INTEGER :: i
 do i = 0, 5
 WRITE(*, *) "Hello World"
 end do
END SUBROUTINE func_forceinline

PROGRAM test_inline
 IMPLICIT NONE
 call func_forceinline
END PROGRAM test_inline

1.1.2.3 UNROLL

This directive instructs the compiler about the number of times the loop should be unrolled.

!DIR$ UNROLL [(n)]

• n – optional parameter, integer constant ranges from 1 - 512

• When n equals 0, compiler will decide if unrolling should happen or not

To use this directive, compiler optimization level should be -O1 or above.

If n is specified, the optimizer unrolls the loop by n times.

If n is not specified or out of range, the optimizer unrolls the loop based on profitability.

Flang - the Fortran Compiler 57225 Rev. 3.1 July 2021

8 Synopsis Chapter 1

Example:

Example 1:
subroutine func1(a, b)
 integer :: m = 10
 integer :: i, a(m), b(m)

 !dir$ unroll
 do i = 1, m
 b(i) = a(i) + 1
 end do
end subroutine func1

Example 2:
subroutine func2(m, a, b)
 integer :: i, m, a(m), b(m)

 !dir$ unroll(4)
 do i = 1, m
 b(i) = a(i) + 1
 end do
end subroutine func2

1.1.2.4 NOUNROLL

This directive disables unroll of the loop before which it has been used and is the opposite of

UNROLL.

!DIR$ NOUNROLL

Example:

subroutine func1(a, b)
 integer :: m = 10
 integer :: i, a(m), b(m)

 !dir$ nounroll
 do i = 1, m
 b(i) = a(i) + 1
 end do
end subroutine func1

1.1.2.5 PREFETCH

This directive is used to insert a hint in the code generator to prefetch instruction for memory

references, wherever supported. This allows a better performance in the characteristics of the code.

For more information, refer LLVM documentation.

!$MEM PREFETCH

Constraints: To enable this directive, compiler optimization level should be in -O0 to -O3.

https://llvm.org/docs/LangRef.html#llvm-prefetch-intrinsic

57225 Rev. 3.1 July 2021 Flang - the Fortran Compiler

 Chapter 1 Synopsis 9

Example:

subroutine prefetch_dir(a1, a2)
 integer :: a1(4096)
 integer :: a2(4096)

 do i = 128, (4096 - 128)
 !$mem prefetch a1, a2(i + 256)
 a1(i) = a2(i - 127) + a2(i + 127)
 end do
end subroutine prefetch_dir

1.1.2.6 Other Supported Pragmas

The compiler directives to control the loop vectorizations are:

• !DIR$ VECTOR

• !DIR$ NOVECTOR

• !DIR$ VECTOR ALWAYS

These directives are only Beta release. So, to enable these directives -Menable-vectorize-

pragmas=true option needs to be specified. Also, the optimization levels should be in -O1 to -O3.

Note: The option -Menable-vectorize-pragmas could be deprecated in the future release. So, do

follow the documentation updates closely.

1.1.3 Code Generation and Optimization

Flang relies on AOCC optimizer and code generator to transform the available LLVM IR and

generate the best code for the target x86 platform.

Flang - the Fortran Compiler 57225 Rev. 3.1 July 2021

10 Synopsis Chapter 1

1.2 Options

For a list of compiler options, use the following commands:

• $flang -help
• $flang -help-hidden

The Flang compiler supports all the Clang compiler options and the following Flang-specific

compiler options:

Table 1. Flang-specific Compiler Options

Option Description

-Kieee It is enabled by default from AOCC 2.2.0.

It instructs the compiler to conform to the IEEE-754 specifications.

The compiler will perform floating-point operations in strict

conformance with the IEEE 754 standard. Some optimizations are

disabled when this option is specified.

-Menable-vectorize-
pragmas=<value>

Honors the vectorization pragmas specified in the Fortran

programs. The vectorization pragms vector, novector, and ivdep are

supported in this release.

-no-flang-libs Do not link against Flang libraries.

-mp Enable OpenMP and link with OpenMP library libomp.

-nomp Do not link with OpenMP library libomp.

-Mbackslash Treat backslash character like a c-style escape character.

-Mno-backslash Treat backslash like any other character.

-Mbyteswapio Swap byte-order for unformatted input/output.

-Mfixed Assume fixed-format source.

-Mextend Allow source lines up to 132 characters.

-Mfreeform Assume free-format source.

-Mpreprocess Run preprocessor for Fortran files.

-Mstandard Check standard conformance.

-Msave Assume all variables have SAVE attribute.

-module Path to module file (-I also works).

-Mallocatable=95 Select Fortran 95 semantics for assignments to allocatable objects

(default).

-Mallocatable=03 Select Fortran 03 semantics for assignments to allocatable objects.

-static-flang-libs Link using static Flang libraries.

-M[no]daz Treat denormalized numbers as zero.

-M[no]flushz Set SSE to flush-to-zero mode.

-Mcache_align Align large objects on cache-line boundaries.

-M[no]fprelaxed This option is ignored.

http://clang.llvm.org/docs/CommandGuide/clang.html

57225 Rev. 3.1 July 2021 Flang - the Fortran Compiler

 Chapter 1 Synopsis 11

Option Description

-fdefault-integer-8 Treat INTEGER and LOGICAL as INTEGER*8 and LOGICAL*8.

-fdefault-real-8 Treat REAL as REAL*8.

-i8 Treat INTEGER and LOGICAL as INTEGER*8 and LOGICAL*8.

-r8 Treat REAL as REAL*8.

-fno-fortran-main Do not link in Fortran main.

-Mrecursive Allocate local variables on the stack; thus, allowing recursion.

SAVEd, data-initialized, or namelist members are always allocated

statically, regardless of the setting of this switch.

1.2.1 Target Selection

The following table lists all the target selection options:

Table 2. Target Selection Options

Option Description

-march=<cpu> Use it to specify if Clang must generate code for a specific processor family

member and later. For example, if you specify -march=i486, the compiler can

generate instructions that are valid on i486 and later processors, but which may not

exist on the earlier ones.

-march=znver1 Use this architecture flag for enabling the best code generation and tuning for AMD

Zen based x86 architecture. All the x86 Zen ISA and associated intrinsic are

supported.

-march=znver2 Use this architecture flag for enabling the best code generation and tuning for AMD

Zen2 based x86 architecture. All x86 Zen2 ISA and associated intrinsic are

supported.

-march=znver3 Use this architecture flag for enabling best code generation and tuning for AMD

Zen3 based x86 architecture. All x86 Zen3 ISA and associated intrinsic are

supported.

Flang - the Fortran Compiler 57225 Rev. 3.1 July 2021

12 Synopsis Chapter 1

1.2.2 Code Generation

The following table lists all the code generation options:

Table 3. Code Generation Options

Level Description

-O0 Means no optimization: this level compiles the fastest and generates the most

debuggable code.

-O1 Somewhere between the levels -O0 and -O2.

-O2 A moderate level of optimization, which enables most optimizations.

-O3 Similar to the level -O2, except that it enables the optimizations, which take

longer to perform or may generate larger code (in an attempt to make the program

run faster).

The -O3 level in AOCC has more optimizations when compared to the base

LLVM version on which it is based. These optimizations include improved

handling of indirect calls, advanced vectorization, and so on.

-Ofast Enables all the optimizations from -O3 along with other aggressive optimizations

that may violate strict compliance with language standards.

The -Ofast level in AOCC has more optimizations when compared to the base

LLVM version on which it is based. These optimizations include partial

unswitching, improvements to inlining, unrolling, and so on.

-Os Similar to the level -O2, but with extra optimizations to reduce the code size.

-Oz Similar to the level -Os (and thus, -O2), but reduces the code size further.

-O Equivalent to the level O2.

-O4 and higher Equivalent to the level O3.

For more information on these options, refer LLVM documentation.

The following optimizations are not present in LLVM and are specific to AOCC:

• -fstruct-layout=[1,2,3,4,5,6,7]

Analyzes the whole program to determine if the structures in the code can be peeled and if the

pointer or integer fields in the structure can be compressed. If feasible, this optimization

transforms the code to enable these improvements. This transformation is likely to improve

cache utilization and memory bandwidth. It is expected to improve the scalability of programs

executed on multiple cores.

This is effective only under flto as the whole program analysis is required to perform this

optimization. You can choose different levels of aggressiveness with which this optimization

can be applied to your application; with 1 being the least aggressive and 7 being the most

aggressive level.

− fstruct-layout=1 enables structure peeling.

http://llvm.org/docs/Passes.html

57225 Rev. 3.1 July 2021 Flang - the Fortran Compiler

 Chapter 1 Synopsis 13

− fstruct-layout=2 enables structure peeling and selectively compresses self-referential

pointers in these structures to 32-bit pointers, wherever safe.

− fstruct-layout=3 enables structure peeling and selectively compresses self-referential

pointers in these structures to 16-bit pointers, wherever safe.

− fstruct-layout=4 enables structure peeling, pointer compression as in level 2 and further

enables compression of structure fields, which are of integer type. This is performed under

a strict safety check.

− fstruct-layout=5 enables structure peeling, pointer compression as in level 3 and further

enables compression of structure fields which are of integer type. This is performed under

a strict safety check.

− fstruct-layout=6 enables structure peeling, pointer compression as in level 2 and further

enables compression of structure fields, which are of type 64-bit signed int or unsigned

int. You must ensure that the values assigned to 64-bit signed int fields are in range -(2^31

- 1) to +(2^31 - 1) and 64-bit unsigned int fields are in the range 0 to +(2^31 - 1). Else,

incorrect results may be obtained. This compression is performed without considering any

safety analysis. So, you must ensure the safety based on the program compiled.

− fstruct-layout=7 enables structure peeling, pointer compression as in level 3 and further

enables compression of structure fields, which are of type 64-bit signed int or unsigned

int. You must ensure that the values assigned to 64-bit signed int fields are in range -(2^31

- 1) to +(2^31 - 1) and 64-bit unsigned int fields are in the range 0 to +(2^31 - 1). Else,

incorrect results may be obtained. This compression is performed without considering any

safety analysis. So, must ensure the safety based on the program compiled.

Notes:

1. fstruct-layout=4 and fstruct-layout=5 are derived from fstruct-layout=2 and fstruct-

layout=3 respectively, with the added feature of safe compression of integer fields in

structures. Going from fstruct-layout=4 to fstruct-layout=5 may result in higher

performance if the pointer values are such that the pointers can be compressed to 16-

bits.

2. fstruct-layout=6 and fstruct-layout=7 are derived from fstruct-layout=2 and fstruct-

layout=3 respectively, with the added feature of compression of the integer fields in

structures. These are similar to fstruct-layout=4 and fstruct-layout=5, but here, the

integer fields of the structures are always compressed from 64-bits to 32-bits, without

any safety guarantee.

• -fitodcalls

It promotes indirect to direct calls by placing conditional calls. Application or benchmarks that

have small and deterministic set of target functions for function pointers that are passed as call

parameters benefit from this optimization. Indirect-to-direct call promotion transforms the

code to use all possible determined targets under runtime checks and falls back to the original

code for all the other cases. Runtime checks are introduced by the compiler for each of these

possible function pointer targets followed by direct calls to the targets.

This is a link time optimization, which is invoked as -flto -fitodcalls.

Flang - the Fortran Compiler 57225 Rev. 3.1 July 2021

14 Synopsis Chapter 1

• -fitodcallsbyclone

Performs value specialization for functions with function pointers passed as an argument. It
does this specialization by generating a clone of the function. The cloning of the function
happens in the call chain as needed to allow conversion of indirect function call to direct call.
This complements -fitodcalls optimization and is also a link time optimization, which is
invoked as -flto -fitodcallsbyclone.

• -fremap-arrays

Transforms the data layout of a single dimensional array to provide better cache locality. This
optimization is effective only under flto as the whole program analysis is required to perform
this optimization, which can be invoked as -flto -fremap-arrays.

• -finline-aggressive

Enables improved inlining capability through better heuristics. This optimization is more
effective when using with flto as the whole program analysis is required to perform this
optimization, which can be invoked as -flto -finline-aggressive.

• -fnt-store

Generates a non-temporal store instruction for array accesses in a loop with a large trip count.

• -fnt-store=aggressive

This is an experimental option to generate non-temporal store instruction for array accesses in

a loop, whose iteration count cannot be determined at compile time. In this case, compiler

assumes the iteration count is huge.

The following optimization options must be invoked through driver -mllvm <options> as follows:

• -enable-partial-unswitch

Enables partial loop un-switching, which is an enhancement to the existing loop unswitching

optimization in LLVM. Partial loop un-switching hoists a condition inside a loop from a path for

which the execution condition remains invariant, whereas the original loop un-switching works

for a condition that is completely loop invariant. The condition inside the loop gets hoisted out

from the invariant path and original loop is retained for the path where condition is variant.

• -aggressive-loop-unswitch

Experimental option which enables aggressive loop unswitching heuristic (including -enable-

partial-unswitch) based on the usage of the branch conditional values. Loop unswitching

leads to code-bloat. Code-bloat can be minimized if the hoisted condition is executed more

often. This heuristic prioritizes the conditions based on the number of times they are used

within the loop. The heuristic can be controlled with the following options:

− -unswitch-identical-branches-min-count=<n>

Enables unswitching of a loop with respect to a branch conditional value (B), where B

appears in at least <n> compares in the loop. This option is enabled with -aggressive-loop-

unswitch. The default value is 3.

Usage: -mllvm -aggressive-loop-unswitch -mllvm -unswitch-identical-branches-min-

count=<n>

Where, n is a positive integer and lower value of <n> facilitates more unswitching.

57225 Rev. 3.1 July 2021 Flang - the Fortran Compiler

 Chapter 1 Synopsis 15

− -unswitch-identical-branches-max-count=<n>

Enables unswitching of a loop with respect to a branch conditional value (B), where B

appears in at most <n> compares in the loop. This option is enabled with -aggressive-loop-

unswitch. The default value is 6.

Usage: -mllvm -aggressive-loop-unswitch -mllvm -unswitch-identical-branches-max-

count=<n>

Where, n is a positive integer and higher value of <n> facilitates more unswitching.

Note: These options may facilitate more unswitching in some of the workloads. Since, loop-

unswitching inherently leads to code-bloat, facilitating more unswitching may

significantly increase the code size. Hence, it may also lead to longer compilation times.

• -enable-strided-vectorization

Enables strided memory vectorization as an enhancement to the interleaved vectorization

framework present in LLVM. It enables the effective use of gather and scatter kind of

instruction patterns. This flag must be used along with the interleave vectorization flag.

• -enable-epilog-vectorization

Enables vectorization of epilog-iterations as an enhancement to existing vectorization

framework. This enables generation of an additional epilog vector loop version for the

remainder iterations of the original vector loop. The vector size or factor of the original loop

should be large enough to allow an effective epilog vectorization of the remaining iterations.

This optimization takes place only when the original vector loop is vectorized with a vector

width or factor of sixteen. This vectorization width of sixteen may be overwritten by -min-

width-epilog-vectorization command line option.

• -enable-redundant-movs

Removes any redundant mov operations including redundant loads from memory and stores to

memory. This can be invoked using -Wl,-plugin-opt=-enable-redundant-movs.

• -merge-constant

Attempts to promote frequently occurring constants to registers. The aim is to reduce the size

of the instruction encoding for instructions using constants and obtain a performance

improvement.

• -function-specialize

Optimizes the functions with compile time constant formal arguments.

• -lv-function-specialization

Generates specialized function versions when the loops inside function are vectorizable and

the arguments are not aliased with each other.

• -enable-vectorize-compares

Enables vectorization on certain loops with conditional breaks assuming the memory access

are safely bound within the page boundary.

Flang - the Fortran Compiler 57225 Rev. 3.1 July 2021

16 Synopsis Chapter 1

• -inline-recursion=[1,2,3,4]

Enables inlining for recursive functions based on heuristics with level 4 being most aggressive.

The default level will be 2. Higher levels may lead to code-bloat due to expansion of recursive

functions at call sites.

− For level 1-2: Enables inlining for recursive functions using heuristics with inline depth 1.

Level 2 uses more aggressive heuristics.

− For level 3: Enables inlining for all recursive functions with inline depth 1.

− For level 4: Enables inlining for all recursive function with inline depth 10.

This is more effective with flto as the whole program analysis is required to perform this

optimization, which can be invoked as -flto -inline-recursion=[1,2,3,4].

• -reduce-array-computations=[1,2,3]

Performs array dataflow analysis and optimizes the unused array computations.

− reduce-array-computations=1: Eliminates the computations on unused array elements.

− reduce-array-computations=2: Eliminates the computations on zero valued array elements.

− reduce-array-computations=3: Eliminates the computations on unused and zero valued array

elements (combination of 1 and 2).

This optimization is effective with flto as the whole program analysis is required to

perform this optimization, which can be invoked as -flto -reduce-array-

computations=[1,2,3].

• -global-vectorize-slp={true,false}

Vectorizes the straight-line code inside a basic block with data reordering vector operations.

This option is set to true by default.

• -region-vectorize

Experimental flag for enabling vectorization on certain loops with complex control flow which

the normal vectorizer cannot handle.

This optimization is effective with flto as the whole program analysis is required to perform

this optimization, which can be invoked as -flto -region-vectorize.

• -enable-X86-prefetching

Enables the generation of x86 prefetch instruction for the memory references inside a loop/

inside an inner most loop of a loop nest to prefetch the second dimension of multidimensional

array/memory references in the inner most of a loop nest. This is an experimental pass; its

profitability is being improved.

• -suppress-fmas

Identifies the reduction patterns on FMA and suppresses the FMA generation as it is not

profitable on the reduction patterns.

• -enable-licm-vrp

Enables estimation of the virtual register pressure before performing loop invariant code

motion. This estimation is used to control the number of loop invariants that will be hoisted

during the loop invariant code motion.

57225 Rev. 3.1 July 2021 Flang - the Fortran Compiler

 Chapter 1 Synopsis 17

• -loop-splitting

Enables splitting of loops into multiple loops to eliminate the branches, which compare the

loop induction with an invariant or constant expression. This option is enabled under -O3 by

default. To disable this optimization, use -loop-splitting=false.

• -enable-ipo-loop-split

Enables splitting of loops into multiple loops to eliminate the branches, which compares the

loop induction with a constant expression. This constant expression can be derived through

inter-procedural analysis. This option is enabled under -O3 by default. To disable this

optimization, use -enable-ipo-loop-split=false.

• -compute-interchange-order

Enables heuristic for finding the best possible interchange order for a loop nest. To enable this

option, use -enable-loopinterchange. This option is set to false by default.
Usage: -mllvm -enable-loopinterchange -mllvm -compute-interchange-order

• -convert-pow-exp-to-int={true,false}

Converts the call to floating point exponent version of pow to its integer exponent version if

the floating-point exponent can be converted to integer. This option is set to true by default.

• -do-block-reordering={none,normal,aggressive}

Reorders the control predicates in increasing order of complexity from outer predicate to inner

when it is safe. The normal mode reorders simple expressions while the aggressive mode will

reorder predicates involving function calls if it can determine that they have no side-effects.

This option is set to normal by default.

• -fuse-tile-inner-loop

Enables fusion of adjacent tiled loops as a part of loop tiling transformation. This option is set

to false by default.

• -enable-loop-vectorization-with-conditions

Enables efficient vectorization of loops with conditions by conditionally executing the vector

instructions as opposed to flattening the loop body and vectorizing. The vectorized code uses

vector versions of compare instructions to guard the instructions in the loop body and uses

masked instructions to guard against unsafe memory operations.

• -favoid-fpe-causing-opt

Restricts a few optimizations that leads to floating point exceptions.

Flang - the Fortran Compiler 57225 Rev. 3.1 July 2021

18 Synopsis Chapter 1

1.2.3 Deprecated Options

• -vectorize-memory-aggressively (from AOCC 2.2.0)

1.2.4 Driver

-mllvm <options>

Need to provide -mllvm, so that, the option can pass through the compiler front end and is applied

on the optimizer where this optimization is implemented.

For example, -mllvm -enable-strided-vectorization

	Contents
	List of Tables
	Revision History
	Chapter 1 Synopsis
	1.1 Description
	1.1.1 IEEE-754 Support
	1.1.2 Pragma Directives
	1.1.2.1 NOINLINE
	1.1.2.2 FORCEINLINE
	1.1.2.3 UNROLL
	1.1.2.4 NOUNROLL
	1.1.2.5 PREFETCH
	1.1.2.6 Other Supported Pragmas

	1.1.3 Code Generation and Optimization

	1.2 Options
	1.2.1 Target Selection
	1.2.2 Code Generation
	1.2.3 Deprecated Options
	1.2.4 Driver

