

AMD RANDOM NUMBER GENERATOR Library

Version 2.0

DISCLAIMER

The information contained herein is for informational purposes only, and is subject to change

without notice. While every precaution has been taken in the preparation of this document, it

may contain technical inaccuracies, omissions and typographical errors, and AMD is under no

obligation to update or otherwise correct this information. Advanced Micro Devices, Inc.

makes no representations or warranties with respect to the accuracy or completeness of the

contents of this document, and assumes no liability of any kind, including the implied

warranties of noninfringement, merchantability or fitness for particular purposes, with respect

to the operation or use of AMD hardware, software or other products described herein. No

license, including implied or arising by estoppel, to any intellectual property rights is granted

by this document. Terms and limitations applicable to the purchase or use of AMD’s products

are as set forth in a signed agreement between the parties or in AMD's Standard Terms and

Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, and combinations thereof, are trademarks of Advanced Micro

Devices, Inc.

NAG, NAGWare, and the NAG logo are registered trademarks of The Numerical Algorithms

Group Ltd.

Other product names used in this publication are for identification purposes only and may

be trademarks of their respective companies.

Oc 2003-2019 Advanced Micro Devices, Inc., Numerical Algorithms Group Ltd.

All rights reserved.

AMD Random Number Generator Library

Contents

1 Introduction ... 4

2 General Information... 5
2.1 Library Package ... 5
2.2 FORTRAN and C interfaces .. 5
2.3 Example programs calling AMD Random Number Generator Library....................................... 5
2.4 Example programs demonstrating performance .. 5

3 Random Number Generators .. 7
3.1 Base Generators ... 7

3.1.1 Initialization of the Base Generators .. 8
3.1.2 Calling the Base Generators ... 14
3.1.3 Basic NAG Generator ... 15
3.1.4 Wichmann-Hill Generator ... 16
3.1.5 Mersenne Twister ... 16
3.1.6 L’Ecuyer’s Combined Recursive Generator ... 17
3.1.7 Blum-Blum-Shub Generator .. 17
3.1.8 User Supplied Generators .. 18

3.2 Multiple Streams .. 22
3.2.1 Using Different Seeds ... 23
3.2.2 Using Different Generators ... 23
3.2.3 Skip Ahead .. 23
3.2.4 Leap Frogging .. 26

3.3 Distribution Generators .. 29
3.3.1 Continuous Univariate Distributions ... 29
3.3.2 Discrete Univariate Distributions .. 57
3.3.3 Continuous Multivariate Distributions .. 81
3.3.4 Discrete Multivariate Distributions ... 93

4 References .. 95

AMD Random Number Generator Library

1 Introduction

The AMD Random Number Generator (RNG) Library is a set of random number generators and

statistical distribution functions tuned specifically for AMD64 platform processors. The routines

are available via both FORTRAN 77 and C interfaces.

The AMD RNG Library is a comprehensive set of statistical distribution functions which

are founded on various underlying uniform distribution generators (base generators) including

Wichmann- Hill and an implementation of the Mersenne Twister. In addition there are hooks

which allow you to supply your own preferred base generator if it is not already included in

the library. All RNG functionality and interfaces are described in the following sections.

AMD Random Number Generator Library

2 General Information

2.1 Library Package

AMD Random Number Generator library is available as a tar file on the AMD Developer website.

It works on Linux operating systems. For details on installation please refer latest AOCL User

Guide on https://developer.amd.com/amd-aocl/.

2.2 FORTRAN and C interfaces

All routines come with both FORTRAN and C interfaces. Here we document how a C programmer

should call AMD RNG routines.

In C code that uses AMD RNG routines, be sure to include the header file <rng.h>, which

contains function prototypes for all AMD RNG C interfaces. The header file also contains C

prototypes for FORTRAN interfaces, thus the C programmer could call the FORTRAN

interfaces from C, though there is little reason to do so.

C interfaces to the library routines differ from FORTRAN interfaces in the following major

respects:

The FORTRAN interface names are appended by an underscore

The C interfaces contain no workspace arguments; all workspace memory is allocated

internally.

Scalar input arguments are passed by value in C interfaces. FORTRAN interfaces pass all

arguments (except for character string length arguments that are normally hidden

from FORTRAN programmers) by reference.

Most arguments that are passed as character string pointers to FORTRAN interfaces

are passed by value as single characters to C interfaces. The character string length
arguments of FORTRAN interfaces are not required in the C interfaces.

Unlike FORTRAN, C has no native complex data type. AMD RNG C routines which

operate on complex data use the types complex and doublecomplex defined in <rng.h> for

single and double precision computations respectively. Some of the programs in the

examples directory make use of these types.

2.3 Example programs calling AMD Random Number
Generator Library

The /examples subdirectory of the top AMD RNG Library installation directory contains

example programs showing how to call the RNG routines, along with a GNUmakefile to build

and run them. Examples of calling both FORTRAN and C interfaces are included.

2.4 Example programs demonstrating performance

The /examples/performance subdirectory of the top AMD RNG library installation directory

contains several timing programs designed to show the performance of the library when

running on your machine. Again, a GNUmakefile may be used to build and run them.

In order to run a multi-threaded program, use the openmp compiled version of the library. I n

the examples/performance directory a command such as

•

•

•

•

•

https://developer.amd.com/amd-aocl/

AMD Random Number Generator Library

% make OMP_NUM_THREADS=5

will run the timing programs on P processors, where P = 1, 2, 4, 5; i.e., P equals an integer

power of 2 and also equals OMP NUM THREADS if this value is not a power of 2. The results

for a particular routine are concatenated into one file.

Setting OMP NUM THREADS in this way is not useful if you are not on an SMP machine

or are not using an OpenMP version of the library. Neither is it useful to set OMP NUM
THREADS to a value higher than the number of processors (or processor cores) on your

machine. A way to find the number of processors (or cores) under linux is to examine the special

file /proc/cpuinfo which has an entry for every core.

Not all routines in the library are SMP parallelized, so in this context the

OMP NUM THREADS setting only applies to those examples. The other timing programs

run on one thread regardless of the setting of OMP NUM THREADS.

Note that all results generated by timing programs will vary depending on the load on your

machine at run time.

AMD Random Number Generator Library

−

3 Random Number Generators

Within the context of this document, a base random number generator (BRNG) is a mathe-

matical algorithm that, given an initial state, produces a sequence (or stream) of variates (or

values) uniformly distributed over the semi-open interval (0,1]. The period of the BRNG is

defined as the maximum number of values that can be generated before the sequence starts to

repeat. The initial state of a BRNG is often called the seed.

Note that this definition means that the value 1.0 may be returned, but the value 0.0 will

not.

A pseudo-random number generator (PRNG) is a BRNG that produces a stream of variates

that are independent and statistically indistinguishable from a random sequence. A PRNG

has several advantages over a true random number generator in that the generated sequence is

repeatable, has known mathematical properties and is usually much quicker to generate. A quasi-

random number generator (QRNG) is similar to a PRNG, however the variates generated are

not statistically independent, rather they are designed to give a more even distribution in

multidimensional space. Many books on statistics and computer science have good introductions

to PRNGs and QRNGs, see for example Knuth [1] or Banks [2]. All of the BRNGs supplied

in the AMD Random Number Generator library are PRNGs.

In addition to standard PRNGs some applications require cryptographically secure genera-

tors. A PRNG is said to be cryptographically secure if there is no polynomial-time algorithm

which, on input of the first l bits of the output sequence can predict the (l + 1)st bit of

the sequence with probability significantly greater than 0.5. This is equivalent to saying

there exists no polynomial-time algorithm that can correctly distinguish between an output

sequence from the PRNG and a truly random sequence of the same length with probability

significantly greater than 0.5 [3].

A distribution generator is a routine that takes variates generated from a BRNG and

transforms them into variates from a specified distribution, for example the Gaussian (Nor-

mal) distribution.

The AMD Random Number Generator library contains five base generators, and twenty-three

distribution generators. In addition users can supply a custom built generator as the base generator

for all of the distribution generators.

The base generators were tested using the Big Crush, Small Crush and Pseudo Diehard test

suites from the TestU01 software library [8].

3.1 Base Generators

The five base generators (BRNGs) supplied with the AMD RNG library are; the NAG basic

generator [4], a series of Wichmann-Hill generators [5], the Mersenne Twister [6], L’Ecuyer’s

combined recursive generator MRG32k3a [7] and the Blum-Blum-Shub generator [3].

Some of the generators have been slightly modified from their usual form to make them

consistent between themselves. For instance, the Wichmann-Hill generators in standard

form may return exactly 0.0 but not exactly 1.0. In this library, we return 1.0 x to convert the

value x into the semi-open interval (0, 1] without affecting any other randomness properties.

The original Mersenne Twister algorithm returns an exact zero about one time in a few

billion; the AMD RNG implementation returns a tiny non-zero number as surrogate for zero.

AMD Random Number Generator Library

If a single stream of variates is required it is recommended that the Mersenne Twister base

generator is used. This generator combines speed with good statistical properties and an

extremely long period. The NAG basic generator is another quick generator suitable for

generating a single stream. However it has a shorter period than the Mersenne Twister and being

a linear congruential generator, its statistical properties are not as good.

If 273 or fewer multiple streams, with a period of up to 280 are required then it is recommended

that the Wichmann-Hill generators are used. For more streams or multiple streams with a longer

period it is recommended that the L’Ecuyer combined recursive generator is used in combination

with the skip ahead routine. Generating multiple streams of variates by skipping ahead is generally

quicker than generating the streams using the leap frog method.

The Blum-Blum-Shub generator should only be used if a cryptographically secure generator is

required. This generator is extremely slow and has poor statistical properties when used as a base

generator for any of the distributional generators .

3.1.1 Initialization of the Base Generators

A random number generator must be initialized before use. Three routines are supplied within

the library for this purpose: DRANDINITIALIZE, DRANDINITIALIZEBBS and

DRANDINITIALIZEUSER. Of these, DRANDINITIALIZE is used to initialize all of the supplied

base generators, DRANDINITIALIZEBBS supplies an alternative interface to

DRANDINITIALIZE for the Blum-Blum-Shub generator, and DRANDINITIALIZEUSER

allows the user to register and initialize their own base generator.

Both double and single precision versions of all RNG routines are supplied. Double precision

names are prefixed by DRAND, and single precision by SRAND. Note that if a generator has been

initialized using the relevant double precision routine, then the double precision versions of the

distribution generators must also be used, and vice versa. This even applies to generators with

no double or single precision parameters; for example, a call of DRANDDISCRETEUNIFORM

must be preceded by a call to one of the double precision initializers (typically DRANDINITIALIZE).

No utilities for saving, retrieving or copying the current state of a generator have been

provided. All of the information on the current state of a generator (or stream, if multiple streams

are being used) is stored in the integer array STATE and as such this array can be treated as any

other integer array, allowing for easy copying, restoring etc.

The statistical properties of a sequence of random numbers are only guaranteed within

the sequence, and not between sequences provided by the same generator. Therefore it is

likely that repeated initialization will render the numbers obtained less, rather than more,

independent. In most cases there should only be a single call to one of the initialization

routines, per application, and this call must be made before any variates are generated. One

example of where multiple initialization may be required is briefly touched upon in Section

3.2 [Multiple Streams].

AMD Random Number Generator Library

In order to initialize the Blum-Blum-Shub generator a number of additional parameters, as

well as an initial state (seed), are required. Although this generator can be initialized through

the DRANDINITIALIZE routine it is recommended that the DRANDINITIALIZEBBS routine is

used instead.

AMD Random Number Generator Library

•

/

DRANDINITIALIZE / SRANDINITIALIZE

Initialize one of the five supplied base generators; NAG basic generator, Wichmann-Hill

generator, Mersenne Twister, L’Ecuyer’s combined recursive generator (MRG32k3a) or the Blum-

Blum-Shub generator.

(Note that SRANDINITIALIZE is the single precision version of DRANDINITIALIZE. The
argument lists of both routines are identical except that any double precision arguments of
DRANDINITIALIZE are replaced in SRANDINITIALIZE by single precision arguments
- type REAL in FORTRAN or type float in C).

DRANDINITIALIZE (GENID,SUBID,SEED,LSEED,STATE,

LSTATE,INFO)

INTEGER GENID

[SUBROUTINE]

[Input]

On input: a numerical code indicating which of the five base generators to

initialize.

• 1 = NAG basic generator (Section 3.1.3 [Basic NAG Generator]).

• 2 = Wichmann-Hill generator (Section 3.1.4 [Wichmann-Hill Generator],).

• 3 = Mersenne Twister (Section 3.1.5 [Mersenne Twister]).

4 = L’Ecuyer’s Combined Recursive generator (Section 3.1.6 [L’Ecuyer’s

Combined Recursive Generator]).

5 = Blum-Blum-Shub generator (Section 3.1.7 [Blum-Blum-Shub Genera-

tor]).

Constraint: 1≤ GENID ≤ 5.

INTEGER SUBID [Input]

On input: if GENID = 2, then SUBID indicates which of the 273 Wichmann- Hill

generators to use. If GENID = 5 then SUBID indicates the number of bits to use

(v) from each of iteration of the Blum-Blum-Shub generator. In all other cases

SUBID is not referenced.

Constraint: If GENID = 2 then 1≤ SUBID ≤ 273 .

INTEGER SEED(LSEED) [Input]

On input: if GENID= 5 , then SEED is a vector of initial values for the

base generator. These values must be positive integers. The number of values

required depends on the base generator being used. The NAG basic generator

requires one initial value, the Wichmann-Hill generator requires four initial values,

the L’Ecuyer combined recursive generator requires six initial values and the

Mersenne Twister requires 624 initial values. If the number of seeds required by

the chosen generator is > LSEED then SEED(1) is used to initialize the NAG basic

generator. This is then used to generate all of the remaining seed values required.

In general it is best not to set all the elements of SEED to anything too obvious,

such as a single repeated value or a simple sequence. Using such a seed array may

lead to several similar values being created in a row when the generator is

subsequently called. This is particularly true for the Mersenne Twister generator.

•

•

AMD Random Number Generator Library

p

• ≥

In order to initialize the Blum-Blum-Shub generator two large prime values, p and

q are required as well as an initial value s. As p, q and s can be of an arbitrary

size, these values are expressed as a polynomial in B, where B = 224. For example,

p can be factored into a polynomial of order lp, with p = p1 +

p2B + p3B2 + · · · + pl Blp−1. The elements of SEED should then be set to the
following:

• SEED(1) = lp

• SEED(2) to SEED(lp + 1) = p1 to plp

• SEED(lp + 2) = lq

• SEED(lp + 3) to SEED(lp + lq + 2) = q1 to qlq

• SEED(lp + lq + 3) = ls

• SEED(lp + lq + 4) to SEED(lp + lq + ls + 3) = s1 to sls

Constraint: If GENID= 5 then SEED(i) > 0, i = 1, 2, . If GENID = 5 then

SEED must take the values described above.

INTEGER LSEED [Input/Output]

On input: either the length of the seed vector, SEED, or a value <= 0 .

On output: if LSEED < 0 on input, then LSEED is set to the number of initial

values required by the selected generator, and the routine returns. Otherwise

LSEED is left unchanged.

INTEGER STATE(LSTATE) [Output]

On output: the state vector required by all of the supplied distributional and

base generators.

INTEGER LSTATE [Input/Output]

On input: either the length of the state vector, STATE, or a value <= 0 .

On output: if LSTATE <= 0 on input, then LSTATE is set to the minimum

length of the state vector STATE for the base generator chosen, and the routine

returns. Otherwise LSTATE is left unchanged.

Constraint: LSTATE <= 0 or the minimum length for the chosen base generator,

given by:

• GENID = 1: LSTATE≥ 16,

• GENID = 2: LSTATE≥ 20,

• GENID = 3: LSTATE≥ 633,

• GENID = 4: LSTATE≥ 61,

GENID = 5: LSTATE lp + lq + ls + 6, where lp, lq and ls are the order of

the polynomials used to express the parameters p, q and s respectively.

INTEGER INFO [Output]

On output: INFO is an error indicator. If INFO = - i on exit, the i-th argument had

an illegal value. If INFO = 1 on exit, then either, or both of LSEED and / or

LSTATE have been set to the required length for vectors SEED and STATE
respectively. Of the two variables LSEED and LSTATE, only those which had an

input value <= 0 will have been set. The STATE vector will not have been

initialized. If INFO = 0 then the state vector, STATE, has been successfully

initialized.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Beta distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

DOUBLE PRECISION A,B

DOUBLE PRECISION X(N)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) A,B

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Beta distribution

CALL DRANDBETA(N,A,B,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

24

DRANDINITIALIZEBBS / SRANDINITIALIZEBBS

Alternative initialization routine for the Blum-Blum-Shub generator. Unlike the other base

generators supplied with the library, the Blum-Blum-Shub generator requires two additional

parameters, p and q as well as an initial state, s. The parameters p, q and s can be of an arbitrary

size. In order to avoid overflow these values are expressed as a polynomial in B, where

B = 224. For example, p can be factored into a polynomial of order lp, with
p = p1 + p2B + p3B2 + · · · + pl Blp−1, similarly q = q1 + q2B + q3B2 + · · · + ql Blq −1 and

p q

s = s1 + s2B + s3B2 + · · · + sl Bls−1.

(Note that SRANDINITIALIZEBBS is the single precision version of DRANDINITIAL-
IZEBBS. The argument lists of both routines are identical except that any double precision
arguments of DRANDINITIALIZEBBS are replaced in SRANDINITIALIZEBBS by single
precision arguments - type REAL in FORTRAN or type float in C).

DRANDINITIALIZEBBS (NBITS,LP,P,LQ,Q,LS,S,STATE,LSTATE,

INFO)

INTEGER NBITS

[SUBROUTINE]

[Input]

On input: the number of bits, v, to use from each iteration of the Blum- Blum-

Shub generator. If NBITS < 1 then NBITS = 1. If NBITS > 15 then NBITS =

15.

INTEGER LP
On input: the order of the polynomial used to express p (lp).

Constraint: 1 ≤ LP ≤ 25.

INTEGER P(LP)

[Input]

[Input]

On input: the coefficients of the polynomial used to express p. P(i) = pi, i = 1

to lp.

Constraint: 0 ≤ P (i) < 2

INTEGER LQ

On input: the order of the polynomial used to express q (lq).

Constraint: 1 ≤ LQ ≤ 25.

INTEGER Q(LQ)

[Input]

[Input]

On input: the coefficients of the polynomial used to express q. Q(i) = qi, i = 1

to lq .

Constraint: 0 ≤ Q (i) < 2

INTEGER LS

On input: the order of the polynomial used to express s (ls).
Constraint: 1 ≤ LS ≤ 25.

INTEGER S(LS)

[Input]

[Input]

On input: the coefficients of the polynomial used to express s. S(i) = si, i = 1

to ls.

Constraint: 0 ≤ S (i) < 2

INTEGER STATE(*) [Output]

On output: the initial state for the Blum-Blum-Shub generator with parameters

P,Q,S and NBITS.

24

24

AMD Random Number Generator Library

−

INTEGER LSTATE [Input/Output]

On input: either the length of the state vector, STATE, or a value <= 0 .

On output: if LSTATE <= 0 on input, then LSTATE is set to the minimum

length of the state vector STATE for the parameters chosen, and the routine

returns. Otherwise LSTATE is left unchanged.

Constraint: LSTATE≤ 0 or LSTATE ≥ lp + lq + ls + 6

INTEGER INFO [Output]

On output: INFO is an error indicator. If INFO = i on exit, the i-th argument had

an illegal value. If INFO = 1 on exit, then LSTATE has been set to the required

length for the STATE vector. If INFO = 0 then the state vector, STATE, has

been successfully initialized.

3.1.2 Calling the Base Generators

With the exception of the Blum-Blum-Shub generator, there are no interfaces for direct access

to the base generators. All of the base generators return variates uniformly distributed over the

semi-open interval (0, 1]. This functionality can be accessed using the uniform dis- tributional

generator DRANDUNIFORM, with parameter A = 0.0 and parameter B = 1.0. The base generator used

is, as usual, selected during the initialization process (see Section 3.1.1 [Initialization of the Base

Generators]).

To directly access the Blum-Blum-Shub generator, use the routine DRANDBLUMBLUMSHUB.

AMD Random Number Generator Library

DRANDBLUMBLUMSHUB / SRANDBLUMBLUMSHUB

Allows direct access to the bit stream generated by the Blum-Blum-Shub generator.

(Note that SRANDBLUMBLUMSHUB is the single precision version of DRANDBLUM-
BLUMSHUB. The argument lists of both routines are identical except that any double precision
arguments of DRANDBLUMBLUMSHUB are replaced in SRANDBLUMBLUMSHUB by
single precision arguments - type REAL in FORTRAN or type float in C).

DRANDBLUMBLUMSHUB (N,STATE,X,INFO)

INTEGER N

[SUBROUTINE]

[Input]

On input: number of variates required. The total number of bits generated is

24N.

Constraint: N ≥ 0.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator

being used and as such its minimum length varies. Prior to calling

DRANDBLUMBLUMSHUB STATE must have been initialized. See Section 3.1.1

[Initialization of the Base Generators], for information on initialization of the

STATE variable.

On input: the current state of the base generator.

On output: the updated state of the base generator.

INTEGER X(N) [Output]

On output: vector holding the bit stream. The least significant 24 bits of

each of the X (i) contain the bit stream as generated by the Blum-Blum-Shub

generator. The least significant bit of X (1) is the first bit generated, the second least

significant bit of X (1) is the second bit generated etc.

INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −i on exit, the i-th argument had an illegal value.

3.1.3 Basic NAG Generator

The NAG basic generator is a linear congruential generator (LCG) and, like all LCGs, has

the form:

xi = a1xi−1 mod m1,
xi

ui = ,
m1

where the ui, i = 1, 2, · · · form the required sequence.

The NAG basic generator takes a1 = 1313 and m1 = 259, which gives a period of ap-

proximately 257. This generator has been part of the NAG numerical library [4] since Mark 6

and as such has been widely used. It suffers from no known problems, other than those due

to the lattice structure inherent in all LCGs, and, even though the period is relatively short

compared to many of the newer generators, it is sufficiently large for many practical problems.

AMD Random Number Generator Library

− × −

⊕ (x |x)A), i+r

i i+1

⊕

3.1.4 Wichmann-Hill Generator

The Wichmann-Hill [5] base generator uses a combination of four linear congruential gen-

erators (LCGs) and has the form:

wi = a1wi−1 mod m1

xi = a2xi−1 mod m2

yi = a3yi−1 mod m3 zi

= a4zi−1 mod m4

wi
ui = (

m1

xi yi
+ +

m2 m3

zi
+) mod 1,

m4

where the ui, i = 1, 2, · · · form the required sequence. There are 273 sets of parameters,

{ai, mi : i = 1, 2, 3, 4}, to choose from. These values have been selected so that the resulting

generators are independent and have a period of approximately 280 [5].

3.1.5 Mersenne Twister

The Mersenne Twister [6] is a twisted generalized feedback shift register generator. The

algorithm is as follows:

• Set some arbitrary initial values x1, x2, · · · , xr, each consisting of w bits.

• Letting

A =
0 Iw−1 ,

aw aw−1 · · · a1

where Iw−1 is the (w 1) (w 1) identity matrix and each of the ai, i = 1 to w take

a value of either 0 or 1 (i.e. they can be represented as bits). Define

x = (x
(w:(l+1)) (l:1)

where x
(w:(l+1))

|x
(l:1)

indicates the concatenation of the most significant (upper) w − l

bits of xi and the least significant (lower) l bits of xi+1.

• Perform the following operations sequentially:

z = xi+r ⊕ (xi+r » t1)

z = z ⊕ ((z « t2) AND m1)

z = z ⊕ ((z « t3) AND m2)

z = z ⊕ (z » t4)

ui+r = z/(2w − 1),

where t1, t2, t3 and t4 are integers and m1 and m2 are bit-masks and “>>t” and “<<t”

represent a t bit shift right and left respectively, is bit-wise exclusively or (xor)
operation and “AND” is a bit-wise and operation.

i i+1 i+s

AMD Random Number Generator Library

32 32

• −

∈

The ui+r : i = 1, 2,…. then form a pseudo-random sequence, with ui (0, 1), for all i. This

implementation of the Mersenne Twister uses the following values for the algorithmic
constants:

w = 32

a = 0x9908b0df

l = 31

r = 624

s = 397

t1 = 11

t2 = 7

t3 = 15

t4 = 18

m1 = 0x9d2c5680

m2 = 0xefc60000

where the notation 0xDD · · · indicates the bit pattern of the integer whose hexadecimal

representation is DD · · ·.

This algorithm has a period length of approximately 219,937 − 1 and has been shown to

be uniformly distributed in 623 dimensions.

3.1.6 L’Ecuyer’s Combined Recursive Generator

The base generator referred to as L’Ecuyer’s combined recursive generator is referred to as

MRG32k3a in [7] and combines two multiple recursive generators:

xi = a11xi−1 + a12xi−2 + a13xi−3 mod m1

yi = a21yi−1 + a22yi−2 + a23yi−3 mod m2 zi

= xi − yi mod m1

zi
ui = , m

1

where the ui, i = 1, 2, · · · form the required sequence and a11 = 0, a12 = 1403580, a13 =

−810728, m1 = 2 − 209, a21 = 527612, a22 = 0, a23 = −1370589 and m2 = 2 − 22853.

Combining the two multiple recursive generators (MRG) results in sequences with better

statistical properties in high dimensions and longer periods compared with those generated

from a single MRG. The combined generator described above has a period length of approximately

2191

3.1.7 Blum-Blum-Shub Generator

The Blum-Blum-Shub pseudo random number generator is cryptographically secure under the

assumption that the quadratic residuosity problem is intractable [3]. The algorithm consists

of the following:

Generate two large and distinct primes, p and q, each congruent to 3 mod 4. Define

m = pq.

Select a seed s taking a value between 1 and m 1, such that the greatest common

divisor between s and m is 1.

•

AMD Random Number Generator Library

i−1

• Let x0 = s2 mod m. For I = 1, 2, · · · generate:

xi = x2 mod m

where v≥ 1 .

zi = v least significant bits of xi

• The bit-sequence z1, z2, z3, · · · is then the output sequence used.

3.1.8 User Supplied Generators

All of the distributional generators described in Section 3.3 [Distribution Generators], require

a base generator which returns a uniformly distributed value in the semi-open interval (0, 1] and

AMD RNG library includes several such generators (as detailed in Section 3.1). However, for

greater flexibility, the library routines allow the user to register their own base generator function.

This user-supplied generator then becomes the base generator for all of the distribution

generators.

A user supplied generator comes in the form of two routines, one to initialize the generator and

one to generate a set of uniformly distributed values in the semi-open interval (0, 1]. These two

routines can be named anything, but are referred to as UINI for the initialization routine and UGEN

for the generation routine in the following documentation.

In order to register a user supplied generator a call to DRANDINITIALIZEUSER must be

made. Once registered the generator can be accessed and used in the same manner as the

library supplied base generators. The specifications for DRANDINTIALIZEUSER, UINI and

UGEN are given below. See the the example programs drandinitializeuser_example.f and

drandinitializeuser_c_example.c to understand how to use these routines.

AMD Random Number Generator Library

DRANDINITIALIZEUSER / SRANDINITIALIZEUSER

Registers a user supplied base generator so that it can be used with the AMD RNG

distributional generators.

(Note that SRANDINITIALIZEUSER is the single precision version of DRANDINI-
TIALIZEUSER. The argument lists of both routines are identical except that any double pre- cision
arguments of DRANDINITIALIZEUSER are replaced in SRANDINITIALIZEUSER by single
precision arguments – type REAL in FORTRAN or type float in C).

DRANDINITIALIZEUSER (UINI,UGEN,GENID,SUBID,SEED,LSEED,

STATE,LSTATE,INFO)

SUBROUTINE UINI

[SUBROUTINE]

[Input]

On input: routine that will be used to initialize the user supplied generator,

UGEN.

SUBROUTINE UGEN
On input: user supplied base generator.

INTEGER GENID

[Input]

[Input]

On input: parameter is passed directly to UINI. Its function therefore depends

on that routine.

INTEGER SUBID [Input]

On input: parameter is passed directly to UINI. Its function therefore depends

on that routine.

INTEGER SEED(LSEED) [Input]

On input: parameter is passed directly to UINI. Its function therefore depends

on that routine.

INTEGER LSEED [Input/Output]

On input: length of the vector SEED. This parameter is passed directly to

UINI and therefore its required value depends on that routine.

On output: whether LSEED changes will depend on UINI.

INTEGER STATE(LSTATE) [Output]

On output: the state vector required by all of the supplied distributional generators.

The value of STATE returned by UINI has some housekeeping elements appended to
the end before being returned by DRANDINITIALIZEUSER. See Section 3.1.8 [User
Supplied Generators], for details about the form of STATE.

INTEGER LSTATE [Input/Output]

On input: length of the vector STATE. This parameter is passed directly to

UINI and therefore its required value depends on that routine.

On output: whether LSTATE changes will depend on UINI. If LSTATE <=
0 then it is assumed that a request for the required length of STATE has been

made. The value of LSTATE returned from UINI is therefore adjusted to allow for

housekeeping elements to be added to the end of the STATE vector. This results

in the value of LSTATE returned by DRANDINITIALIZEUSER being 3 larger than

that returned by UINI.

AMD Random Number Generator Library

−

−

INTEGER INFO [Output]

On output: INFO is an error indicator. DRANDINITIALIZEUSER will return a value

of 6 if the value of LSTATE is between 1 and 3. Otherwise INFO is passed directly

back from UINI. It is recommended that the value of INFO returned by UINI is kept

consistent with the rest of the AMD RNG library, that is if INFO = I on exit, the i-

th argument had an illegal value. If INFO = 1 on exit, then either, or both of

LSEED and / or LSTATE have been set to the required length for vectors SEED
and STATE respectively and the STATE vector has not have been initialized. If

INFO = 0 then the state vector, STATE, has been successfully initialized.

Example:

C Generate 100 values from the Uniform distribution using

C a user supplied base generator

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,NSKIP,SEED(1),STATE(LSTATE)

INTEGER X(N)

DOUBLE PRECISION A,B

C Set the seed

SEED(1) = 1234

C Set the distributional parameters

A = 0.0D0

B = 1.0D0

C Initialize the base generator. Here RNGNB0GND is a user C

 supplied generator and RNGNB0INI its initializer

CALL DRANDINITIALIZEUSER(RNGNB0INI,RNGNB0GND,1,0,SEED,

* LSEED,STATE,LSTATE,INFO)

C Generate N variates from the Univariate distribution

CALL DRANDUNIFORM(N,A,B,STATE,X,LDX,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

UINI

Specification for a user supplied initialization routine.

UINI (GENID,SUBID,SEED,LSEED,STATE,LSTATE,INFO)

INTEGER GENID

[SUBROUTINE]

[Input]

On input: the ID associated with the generator. It may be used for anything

you like.

INTEGER SUBID [Input]

On input: the sub-ID associated with the generator. It may be used for anything

you like.

INTEGER SEED(LSEED)
On input: an array containing the initial seed for your generator.

[Input]

INTEGER LSEED
On input: either the size of the SEED array, or a value < 1.

[Input/Output]

On output: if LSEED < 1 on entry, LSEED must be set to the required size of

the SEED array. This allows a caller of UINI to query the required size.

INTEGER STATE(LSTATE)
On output: if LSTATE < 1 on entry, STATE should be unchanged.

[Output]

Otherwise, STATE is a state vector holding internal details required by your

generator. On exit from UINI, the array STATE must hold the following infor-

mation:

STATE(1) = ESTATE, where ESTATE is your minimum allowed size of array

STATE.

STATE(2) = MAGIC, where MAGIC is a magic number of your own choice. This can

be used by your routine UGEN as a check that UINI has previously been called.

STATE(3) = GENID

STATE(4) = SUBID

STATE(5) ... STATE(ESTATE-1) = internal state values required by your gener-

ator routine UGEN; for example, the current value of your seed.

STATE(ESTATE) = MAGIC, i.e. the same value as STATE(2).

INTEGER LSTATE
On input: either the size of the STATE array, or a value < 1.

[Input/Output]

On output: if LSTATE < 1 on entry, LSTATE should be set to the required

size of the STATE array, i.e. the value ESTATE as described above. This allows the

caller of UINI to query the required size.

Constraint: either LSTATE < 1 or LSTATE≥ EST AT E .

INTEGER INFO [Output]

On output: an error code, to be used in whatever way you wish; for example

to flag an incorrect argument to UINI. If no error is encountered, UINI must

set INFO to 0.

AMD Random Number Generator Library

UGEN

Specification for a user supplied base generator.

UGEN (N,STATE,X,INFO)

INTEGER N
On input: the number of random numbers to be generated.

INTEGER STATE(*)

On input: the internal state of your generator.

DOUBLE PRECISION X(N)

[SUBROUTINE]

[Input]

[Input/Output]

[Output]
On output: the array of N uniform distributed random numbers, each in the

semi-open interval (0.0, 1.0] – i.e. 1.0 is a legitimate return value, but 0.0 is not.

INTEGER INFO [Output]

On output: a flag which you can use to signal an error in the call of UGEN – for

example, if UGEN is called without being initialized by UINI.

3.2 Multiple Streams

It is often advantageous to be able to generate variates from multiple, independent, streams.

For example when running a simulation in parallel on several processors. There are four ways

of generating multiple streams using the routines available in the AMD RNG library:

• (a) Using different seeds

• (b) Using different sequences

• I Block-splitting or skipping ahead

• (d) Leap frogging

The four methods are detailed in the following sections. Of the four, (a) should be avoided

in most cases, (b) is only really of any practical use when using the Wichmann-Hill generator,

and is then still limited to 273 streams. Both block-splitting and leap-frogging work using the

sequence from a single generator, both guarantee that the different sequences will not overlap

and both can be scaled to an arbitrary number of streams. Leap-frogging requires no a-priori
knowledge about the number of variates being generated, whereas block-splitting requires the

user to know (approximately) the maximum number of variates required from each stream.

Block-splitting requires no a-priori information on the number of streams required. In contrast

leap-frogging requires the user to know the maximum number of streams required, prior to

generating the first value.

It is known that, dependent on the number of streams required, leap-frogging can lead

to sequences with poor statistical properties, especially when applied to linear congruential

generators (see Section 3.2.4 [Leap Frogging] for a brief explanation). In addition, for more

complicated generators like a L’Ecuyer’s multiple recursive generator leap-frogging can increase

the time required to generate each variate compared to block-splitting. The additional time

required by block-splitting occurs at the initialization stage, and not at the variate generation

stage. Therefore in most instances block-splitting would be the preferred method for generating

multiple sequences.

AMD Random Number Generator Library

· · ·

3.2.1 Using Different Seeds

A different sequence of variates can be generated from the same base generator by initializing the

generator using a different set of seeds. Of the four methods for creating multiple streams described

here, this is the least satisfactory. As mentioned in Section 3.1.1 [Initialization of the Base

Generators], the statistical properties of the base generators are only guaranteed within sequences,

not between sequences. For example, sequences generated from different starting points may

overlap if the initial values are not far enough apart. The potential for overlapping sequences

is reduced if the period of the generator being used is large. Although there is no guarantee of the

independence of the sequences, due to its extremely large period, using the Mersenne Twister

with random starting values is unlikely to lead to problems, especially if the number of

sequences required is small. This is the only way in which multiple sequences can be generated

with the AMD RNG library using the Mersenne Twister as the base generator.

If the statistical properties of different sequences must be provable then one of the other

methods should be adopted.

3.2.2 Using Different Generators

Independent sequences of variates can be generated using different base generators for each

sequence. For example, sequence 1 can be generated using the NAG basic generator, sequence

2 using the L’Ecuyer’s Combined Recursive generator, sequence 3 using the Mersenne Twister.

The Wichmann-Hill generator implemented in the library is in fact a series of 273 independent

generators. The particular sub-generator being used can be selected using the SUBID

variable (see [DRANDINITIALIZE], for details). Therefore, in total, 277 independent streams

can be generated with each using an independent generator (273 Wichmann-Hill generators, and

4 additional base generators).

3.2.3 Skip Ahead

Independent sequences of variates can be generated from a single base generator through

the use of block-splitting, or skipping-ahead. This method consists of splitting the sequence into

k non-overlapping blocks, each of length n, where n is larger than the maximum number of

variates required from any of the sequences. For example:

x1, x2, · · · , xn,

block 1

xn+1, xn+2, · · · , x2n,

block 2

x2n+1, x2n+2, · · · , x3n,
etc

block 3

where x1, x2, is the sequence produced by the generator of interest. Each of the k blocks

provide an independent sequence.

The block splitting algorithm therefore requires the sequence to be advanced a large number

of places. Due to their form this can be done efficiently for linear congruential generators and

multiple congruential generators. The Amd RNG library provides block-splitting for the NAG

Basic generator, the Wichmann-Hill generators and L’Ecuyer’s Combined Recursive generator.

AMD Random Number Generator Library

DRANDSKIPAHEAD / SRANDSKIPAHEAD

Advance a generator N places.

(Note that SRANDSKIPAHEAD is the single precision version of DRANDSKIPA- HEAD.
The argument lists of both routines are identical except that any double precision arguments of
DRANDSKIPAHEAD are replaced in SRANDSKIPAHEAD by single precision arguments
– type REAL in FORTRAN or type float in C).

DRANDSKIPAHEAD (N,STATE,INFO)

INTEGER N

On input: number of places to skip ahead.

Constraint: N ≥ 0.

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator being used

and as such its minimum length varies. Prior to calling DRANDSKIPAHEAD STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators], for

information on initialization of the STATE variable. On input: the current state of

the base generator.

On output: The STATE vector for a generator that has been advanced N
places.

Constraint: The STATE vector must be for either the NAG basic, Wichmann-

Hill or L’Ecuyer Combined Recursive base generators.

INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 3 * 100 values from the Uniform distribution

C Multiple streams generated using the Skip Ahead method

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,NSKIP

INTEGER SEED(1),STATE1(LSTATE),STATE2(LSTATE),STATE3(LSTATE)

DOUBLE PRECISION X1(N),X2(N),X3(N)

DOUBLE PRECISION A,B

C Set the seed

SEED(1) = 1234

C Set the distributional parameters

A = 0.0D0

B = 1.0D0

C Initialize the STATE1 vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE1,LSTATE,INFO)

C Copy the STATE1 vector into other state vectors

DO 20 I = 1,LSTATE

STATE2(I) = STATE1(I)

STATE3(I) = STATE1(I)

20 CONTINUE

C Calculate how many places we want to skip, this

C should be >> than the number of variates we

C wish to generate from each stream

NSKIP = N * N

C Advance each stream, first does not need changing

CALL DRANDSKIPAHEAD(NSKIP,STATE2,INFO)

CALL DRANDSKIPAHEAD(2*NSKIP,STATE3,INFO)

C Generate 3 sets of N variates from the Univariate distribution

CALL DRANDUNIFORM(N,A,B,STATE1,X1,LDX,INFO)

CALL DRANDUNIFORM(N,A,B,STATE2,X2,LDX,INFO)

CALL DRANDUNIFORM(N,A,B,STATE3,X3,LDX,INFO)

C Print the results

DO 40 I = 1,N

WRITE(6,*) X1(I),X2(I),X3(I)

40 CONTINUE

AMD Random Number Generator Library

1

1

1

3.2.4 Leap Frogging

Independent sequences of variates can be generated from a single base generator through

the use of leap-frogging. This method involves splitting the sequence from a single generator into

k disjoint subsequences. For example:

Subsequence 1 : x1, xk+1, x2k+1, · · ·

Subsequence 2 : x2, xk+2, x2k+2, · · ·

...

Subsequence k : xk, x2k, x3k, · · ·

each subsequence is then provides an independent stream.

The leap-frog algorithm therefore requires the generation of every kth variate of a se-

quence. Due to their form this can be done efficiently for linear congruential generators and

multiple congruential generators. The library provides leap-frogging for the NAG Basic generator,

the Wichmann-Hill generators and L’Ecuyer’s Combined Recursive generator.

As an illustrative example, a brief description of the algebra behind the implementation of

the leap-frog algorithm (and block-splitting algorithm) for a linear congruential generator

(LCG) will be given. A linear congruential generator has the form xi+1 = a1xi mod m1.

The recursive nature of a LCG means that

xi+v = a1xi+v−1 mod m1

= a1(a1xi+v−2 mod m1) mod m1

= a2xi+v−2 mod m1

= av xi mod m1

The sequence can be quickly advanced v places by multiplying the current state (xi) by
av mod m1, hence allowing block-splitting. Leap-frogging is implemented by using ak, where

20 1

k is the number of streams required, in place of a1 in the standard LCG recursive formula.

In a linear congruential generator the multiplier a1 is constructed so that the generator has

good statistical properties in, for example, the spectral test. When using leap-frogging to

construct multiple streams this multiplier is replaced with ak, and there is no guarantee that

this new multiplier will have suitable properties especially as the value of k depends

on the number of streams required and so is likely to change depending on the application. This

problem can be 26mphasized by the lattice structure of LCGs.

Note that, due to rounding, a sequence generated using leap-frogging and a sequence

constructed by taking every kth value from a set of variates generated without leap-frogging may

differ slightly. These differences should only affect the least significant digit.

AMD Random Number Generator Library

−

DRANDLEAPFROG / SRANDLEAPFROG

Amend a generator so that it will generate every Kth value.

(Note that SRANDLEAPFROG is the single precision version of DRANDLEAPFROG.
The argument lists of both routines are identical except that any double precision arguments of
DRANDLEAPFROG are replaced in SRANDLEAPFROG by single precision arguments
- type REAL in FORTRAN or type float in C).

DRANDLEAPFROG (N,K,STATE,INFO)

INTEGER N
On input: total number of streams being used.

Constraint: N > 0.

INTEGER K

On input: number of the current stream

Constraint: 0< K ≤ N .

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator being

used and as such its minimum length varies. Prior to calling DRANDLEAPFROG

STATE must have been initialized. See Section 3.1.1 [Initialization of the Base

Generators], for information on initialization of the STATE variable. On input:

the current state of the base generator.

On output: The STATE vector for a generator that has been advanced K 1 places

and will return every N th value.

Constraint: The STATE array must be for either the NAG basic, Wichmann-

Hill or L’Ecuyer Combined Recursive base generators.

INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 3 * 100 values from the Uniform distribution

C Multiple streams generated using the Leap Frog method

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO

INTEGER SEED(1),STATE1(LSTATE),STATE2(LSTATE),STATE3(LSTATE)

DOUBLE PRECISION X1(N),X2(N),X3(N)

DOUBLE PRECISION A,B

C Set the seed

SEED(1) = 1234

C Set the distributional parameters

A = 0.0D0

B = 1.0D0

C Initialize the STATE1 vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE1,LSTATE,INFO)

C Copy the STATE1 vector into other state vectors

DO 20 I = 1,LSTATE

STATE2(I) = STATE1(I)

STATE3(I) = STATE1(I)

20 CONTINUE

C Update each stream so they generate every 3rd value

CALL DRANDLEAPFROG(3,1,STATE1,INFO)

CALL DRANDLEAPFROG(3,2,STATE2,INFO)

CALL DRANDLEAPFROG(3,3,STATE3,INFO)

C Generate 3 sets of N variates from the Univariate distribution

CALL DRANDUNIFORM(N,A,B,STATE1,X1,LDX,INFO)

CALL DRANDUNIFORM(N,A,B,STATE2,X2,LDX,INFO)

CALL DRANDUNIFORM(N,A,B,STATE3,X3,LDX,INFO)

C Print the results

DO 40 I = 1,N

WRITE(6,*) X1(I),X2(I),X3(I)

40 CONTINUE

AMD Random Number Generator Library

−

3.3 Distribution Generators

3.3.1 Continuous Univariate Distributions

DRANDBETA / SRANDBETA

Generates a vector of random variates from a beta distribution with probability density

function, f (X), where:

if 0 ≤ X ≤ 1 and A, B > 0.0, otherwise f (X) = 0.

(Note that SRANDBETA is the single precision version of DRANDBETA. The argument lists
of both routines are identical except that any double precision arguments of DRAND- BETA
are replaced in SRANDBETA by single precision arguments - type REAL in FOR- TRAN or
type float in C).

DRANDBETA (N,A,B,STATE,X,INFO)

INTEGER N

On input: number of variates required.

Constraint: N ≥ 0.

DOUBLE PRECISION A

On input: first parameter for the distribution.

Constraint: A> 0.

DOUBLE PRECISION B
On input: second parameter for the distribution.

Constraint: B> 0.

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator be-

ing used and as such its minimum length varies. Prior to calling DRANDBETA

STATE must have been initialized. See Section 3.1.1 [Initialization of the Base

Generators], for information on initialization of the STATE variable. On input:

the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N)

On output: vector of variates from the specified distribution.

INTEGER INFO

[Output]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Beta distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

DOUBLE PRECISION A,B

DOUBLE PRECISION X(N)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) A,B

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Beta distribution

CALL DRANDBETA(N,A,B,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

DRANDCAUCHY / SRANDCAUCHY

Generates a vector of random variates from a Cauchy distribution with probability density

function, f (X), where:

(Note that SRANDCAUCHY is the single precision version of DRANDCAUCHY. The

argument lists of both routines are identical except that any double precision arguments of

DRANDCAUCHY are replaced in SRANDCAUCHY by single precision arguments - type

REAL in FORTRAN or type float in C).

DRANDCAUCHY (N,A,B,STATE,X,INFO)

INTEGER N

On input: number of variates required.

Constraint: N ≥ 0.

DOUBLE PRECISION A
On input: median of the distribution.

DOUBLE PRECISION B

On input: semi-quartile range of the distribution.

Constraint: B≥ 0.

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator being

used and as such its minimum length varies. Prior to calling DRANDCAUCHY

STATE must have been initialized. See Section 3.1.1 [Initialization of the Base

Generators], for information on initialization of the STATE variable. On input:

the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N)

On output: vector of variates from the specified distribution.

INTEGER INFO

[Output]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Cauchy distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

DOUBLE PRECISION A,B

DOUBLE PRECISION X(N)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) A,B

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Cauchy distribution

CALL DRANDCAUCHY(N,A,B,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

DRANDCHISQUARED / SRANDCHISQUARED

Generates a vector of random variates from a χ2 distribution with probability density func-

tion, f (X), where:

if X > 0, otherwise f (X) = 0. Here ν is the degrees of freedom, DF.

(Note that SRANDCHISQUARED is the single precision version of DRANDCHI-
SQUARED. The argument lists of both routines are identical except that any double precision
arguments of DRANDCHISQUARED are replaced in SRANDCHISQUARED by single
precision arguments – type REAL in FORTRAN or type float in C).

DRANDCHISQUARED (N,DF,STATE,X,INFO)

INTEGER N

On input: number of variates required.

Constraint: N ≥ 0.

INTEGER DF
On input: degrees of freedom of the distribution.

Constraint: DF> 0.

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator being

used and as such its minimum length varies. Prior to calling DRANDCHISQUARED

STATE must have been initialized. See Section 3.1.1 [Initialization of the Base

Generators], for information on initialization of the STATE variable. On input:

the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N)

On output: vector of variates from the specified distribution.

INTEGER INFO

[Output]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Chi-squared distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

INTEGER DF

DOUBLE PRECISION X(N)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) DF

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Chi-squared distribution

CALL DRANDCHISQUARED(N,DF,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

DRANDEXPONENTIAL / SRANDEXPONENTIAL

Generates a vector of random variates from an exponential distribution with probability

density function, f (X), where

if X > 0, otherwise f (X) = 0.

(Note that SRANDEXPONENTIAL is the single precision version of DRANDEXPO-
NENTIAL. The argument lists of both routines are identical except that any double precision
arguments of DRANDEXPONENTIAL are replaced in SRANDEXPONENTIAL by single
precision arguments – type REAL in FORTRAN or type float in C).

DRANDEXPONENTIAL (N,A,STATE,X,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

DOUBLE PRECISION A
On input: exponential parameter.

Constraint: A≥ 0.

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator being used

and as such its minimum length varies. Prior to calling DRANDEXPONENTIAL STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators], for

information on initialization of the STATE variable. On input: the current state of

the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

INTEGER INFO

[Output]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Exponential distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

DOUBLE PRECISION A

DOUBLE PRECISION X(N)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) A

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Exponential distribution

CALL DRANDEXPONENTIAL(N,A,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

DRANDF / SRANDF

Generates a vector of random variates from an F distribution, also called the Fisher’s

variance ratio distribution, with probability density function, f (X), where:

if X > 0, otherwise f (X) = 0. Here µ is the first degrees of freedom, (DF1) and ν is the

second degrees of freedom, (DF2).

(Note that SRANDF is the single precision version of DRANDF. The argument lists of
both routines are identical except that any double precision arguments of DRANDF are replaced
in SRANDF by single precision arguments – type REAL in FORTRAN or type float in C).

DRANDF (N,DF1,DF2,STATE,X,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

INTEGER DF1
On input: first degrees of freedom.

Constraint: DF1≥ 0.

INTEGER DF2
On input: second degrees of freedom.

Constraint: DF2≥ 0.

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator being used

and as such its minimum length varies. Prior to calling DRANDF STATE must

have been initialized. See Section 3.1.1 [Initialization of the Base Gener- ators], for

information on initialization of the STATE variable.

On input: the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

INTEGER INFO

[Output]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the F distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

INTEGER DF1,DF2

DOUBLE PRECISION X(N)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) DF1,DF2

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the F distribution

CALL DRANDF(N,DF1,DF2,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

DRANDGAMMA / SRANDGAMMA

Generates a vector of random variates from a Gamma distribution with probability density

function, f (X), where:

if X ≥ 0 and A, B > 0.0, otherwise f (X) = 0.

(Note that SRANDGAMMA is the single precision version of DRANDGAMMA. The argument
lists of both routines are identical except that any double precision arguments of DRANDGAMMA are
replaced in SRANDGAMMA by single precision arguments - type REAL in FORTRAN or type
float in C).

DRANDGAMMA (N,A,B,STATE,X,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

DOUBLE PRECISION A
On input: first parameter of the distribution.

Constraint: A> 0.

DOUBLE PRECISION B
On input: second parameter of the distribution.

Constraint: B> 0.

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator be-

ing used and as such its minimum length varies. Prior to calling DRANDGAMMA

STATE must have been initialized. See Section 3.1.1 [Initialization of the Base

Generators], for information on initialization of the STATE variable. On input:

the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

INTEGER INFO

[Output]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Gamma distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

DOUBLE PRECISION A,B

DOUBLE PRECISION X(N)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) A,B

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Gamma distribution

CALL DRANDGAMMA(N,A,B,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

DRANDGAUSSIAN / DRANDGAUSSIAN

Generates a vector of random variates from a Gaussian distribution with probability density

function, f (X), where:

Here µ is the mean, (XMU) and σ2 the variance, (VAR) of the distribution.

(Note that SRANDGAUSSIAN is the single precision version of DRANDGAUSSIAN.
The argument lists of both routines are identical except that any double precision arguments of
DRANDGAUSSIAN are replaced in SRANDGAUSSIAN by single precision arguments - type
REAL in FORTRAN or type float in C).

DRANDGAUSSIAN (N,XMU,VAR,STATE,X,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

DOUBLE PRECISION XMU
On input: mean of the distribution.

DOUBLE PRECISION VAR
On input: variance of the distribution.

Constraint: VAR≥ 0.

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator being

used and as such its minimum length varies. Prior to calling DRANDGAUSSIAN

STATE must have been initialized. See Section 3.1.1 [Initialization of the Base

Generators], for information on initialization of the STATE variable. On input:

the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

INTEGER INFO

[Output]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Gaussian distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

DOUBLE PRECISION XMU,VAR

DOUBLE PRECISION X(N)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) XMU,VAR

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Gaussian distribution

CALL DRANDGAUSSIAN(N,XMU,VAR,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

DRANDLOGISTIC / SRANDLOGISTIC

Generates a vector of random variates from a logistic distribution with probability density

function, f (X), where:

(Note that SRANDLOGISTIC is the single precision version of DRANDLOGISTIC. The
argument lists of both routines are identical except that any double precision arguments of
DRANDLOGISTIC are replaced in SRANDLOGISTIC by single precision arguments - type
REAL in FORTRAN or type float in C).

DRANDLOGISTIC (N,A,B,STATE,X,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

DOUBLE PRECISION A
On input: mean of the distribution.

DOUBLE PRECISION B

[SUBROUTINE]

[Input]

[Input]

[Input]

On input: spread of the distribution. B =

deviation of the distribution.

Constraint: B> 0.

INTEGER STATE(*)

√3σ/π where σ is the standard

[Input/Output]

The STATE vector holds information on the state of the base generator being used

and as such its minimum length varies. Prior to calling DRANDLOGISTIC STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators], for

information on initialization of the STATE variable. On input: the current state of

the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

INTEGER INFO

[Output]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Logistic distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

DOUBLE PRECISION A,B

DOUBLE PRECISION X(N)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) A,B

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Logistic distribution

CALL DRANDLOGISTIC(N,A,B,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

DRANDLOGNORMAL / SRANDLOGNORMAL

Generates a vector of random variates from a lognormal distribution with probability density

function, f (X), where:

if X > 0, otherwise f (X) = 0. Here µ is the mean, (XMU) and σ2 the variance, (VAR) of

the underlying Gaussian distribution.

(Note that SRANDLOGNORMAL is the single precision version of DRANDLOGNOR-
MAL. The argument lists of both routines are identical except that any double precision
arguments of DRANDLOGNORMAL are replaced in SRANDLOGNORMAL by single pre-
cision arguments – type REAL in FORTRAN or type float in C).

DRANDLOGNORMAL (N,XMU,VAR,STATE,X,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

DOUBLE PRECISION XMU
On input: mean of the underlying Gaussian distribution.

DOUBLE PRECISION VAR
On input: variance of the underlying Gaussian distribution.

Constraint: VAR≥ 0.

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator being

used and as such its minimum length varies. Prior to calling DRANDLOGNORMAL

STATE must have been initialized. See Section 3.1.1 [Initialization of the Base

Generators], for information on initialization of the STATE variable. On input:

the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

INTEGER INFO

[Output]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Lognormal distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

DOUBLE PRECISION XMU,VAR

DOUBLE PRECISION X(N)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) XMU,VAR

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Lognormal distribution

CALL DRANDLOGNORMAL(N,XMU,VAR,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

DRANDSTUDENTST / SRANDSTUDENTST

Generates a vector of random variates from a Students T distribution with probability

density function, f (X), where:

Here ν is the degrees of freedom, DF.

(Note that SRANDSTUDENTST is the single precision version of DRANDSTU-
DENTST. The argument lists of both routines are identical except that any double precision
arguments of DRANDSTUDENTST are replaced in SRANDSTUDENTST by single precision
arguments – type REAL in FORTRAN or type float in C).

DRANDSTUDENTST (N,DF,STATE,X,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

INTEGER DF
On input: degrees of freedom.

Constraint: DF> 0.

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator being

used and as such its minimum length varies. Prior to calling DRANDSTUDENTST

STATE must have been initialized. See Section 3.1.1 [Initialization of the Base

Generators], for information on initialization of the STATE variable. On input:

the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

INTEGER INFO

[Output]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Students T distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

INTEGER DF

DOUBLE PRECISION X(N)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) DF

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Students T distribution

CALL DRANDSTUDENTST(N,DF,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

− MIN

MAX −

DRANDTRIANGULAR / SRANDTRIANGULAR

Generates a vector of random variates from a Triangular distribution with probability den-

sity function, f (X), where:

2(X X)
f (X) = ,

(XMAX – XMIN)(XMED – XMIN)

if XMIN < X ≤ XMED, else

2(X X)
f (X) = ,

(XMAX – XMIN)(XMAX – XMED)

if XMED < X ≤ XMAX, otherwise f (X) = 0.

(Note that SRANDTRIANGULAR is the single precision version of DRANDTRIANGULAR.
The argument lists of both routines are identical except that any double precision arguments of
DRANDTRIANGULAR are replaced in SRANDTRIANGULAR by single pre- cision arguments
– type REAL in FORTRAN or type float in C).

DRANDTRIANGULAR (N,XMIN,XMED,XMAX,STATE,X,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

DOUBLE PRECISION XMIN
On input: minimum value for the distribution.

DOUBLE PRECISION XMED
On input: median value for the distribution.

Constraint: XMIN ≤ XMED ≤ XMAX .

DOUBLE PRECISION XMAX
On input: maximum value for the distribution.

Constraint: XMAX ≥ XMIN .

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input]

[Input]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator being

used and as such its minimum length varies. Prior to calling DRANDTRIANGULAR

STATE must have been initialized. See Section 3.1.1 [Initialization of the Base

Generators], for information on initialization of the STATE variable. On input:

the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

INTEGER INFO

[Output]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Triangular distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

DOUBLE PRECISION XMIN,XMED,XMAX

DOUBLE PRECISION X(N)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) XMIN,XMED,XMAX

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Triangular distribution

CALL DRANDTRIANGULAR(N,XMIN,XMED,XMAX,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

DRANDUNIFORM / SRANDUNIFORM

Generates a vector of random variates from a Uniform distribution with probability density

function, f (X), where:

f (X) =
1

.
B – A

(Note that SRANDUNIFORM is the single precision version of DRANDUNIFORM. The
argument lists of both routines are identical except that any double precision arguments of
DRANDUNIFORM are replaced in SRANDUNIFORM by single precision arguments – type
REAL in FORTRAN or type float in C).

DRANDUNIFORM (N,A,B,STATE,X,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

DOUBLE PRECISION A
On input: minimum value for the distribution.

DOUBLE PRECISION B
On input: maximum value for the distribution.

Constraint: B≥ A.

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator being

used and as such its minimum length varies. Prior to calling DRANDUNIFORM

STATE must have been initialized. See Section 3.1.1 [Initialization of the Base

Generators], for information on initialization of the STATE variable. On input:

the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

INTEGER INFO

[Output]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Uniform distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

DOUBLE PRECISION A,B

DOUBLE PRECISION X(N)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) A,B

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Uniform distribution

CALL DRANDUNIFORM(N,A,B,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

±

DRANDVONMISES / SRANDVONMISES

Generates a vector of random variates from a Von Mises distribution with probability density

function, f (X), where:

f (X) = eκ cos X

2πI0(κ)

where X is reduced modulo 2π so that it lies between π, and κ is the concentration

parameter VK.

(Note that SRANDVONMISES is the single precision version of DRANDVONMISES.
The argument lists of both routines are identical except that any double precision arguments of
DRANDVONMISES are replaced in SRANDVONMISES by single precision arguments
- type REAL in FORTRAN or type float in C).

DRANDVONMISES (N,VK,,STATE,X,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

DOUBLE PRECISION VK
On input: concentration parameter.

Constraint: VK> 0.

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator being

used and as such its minimum length varies. Prior to calling DRANDVONMISES

STATE must have been initialized. See Section 3.1.1 [Initialization of the Base

Generators], for information on initialization of the STATE variable. On input:

the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

INTEGER INFO

[Output]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Von Mises distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

DOUBLE PRECISION VK

DOUBLE PRECISION X(N)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) VK

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Von Mises distribution

CALL DRANDVONMISES(N,VK,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

DRANDWEIBULL / SRANDWEIBULL

Generates a vector of random variates from a Weibull distribution with probability density

function, f (X), where:

if X > 0, otherwise f (X) = 0.

(Note that SRANDWEIBULL is the single precision version of DRANDWEIBULL. The
argument lists of both routines are identical except that any double precision arguments of
DRANDWEIBULL are replaced in SRANDWEIBULL by single precision arguments – type
REAL in FORTRAN or type float in C).

DRANDWEIBULL (N,A,B,STATE,X,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

DOUBLE PRECISION A
On input: shape parameter for the distribution.

Constraint: A> 0.

DOUBLE PRECISION B
On input: scale parameter for the distribution.

Constraint: B> 0.

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator being

used and as such its minimum length varies. Prior to calling DRANDWEIBULL

STATE must have been initialized. See Section 3.1.1 [Initialization of the Base

Generators], for information on initialization of the STATE variable. On input:

the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(N)
On output: vector of variates from the specified distribution.

INTEGER INFO

[Output]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Weibull distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

DOUBLE PRECISION A,B

DOUBLE PRECISION X(N)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) A,B

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Weibull distribution

CALL DRANDWEIBULL(N,A,B,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

3.3.2 Discrete Univariate Distributions

DRANDBINOMIAL / SRANDBINOMIAL

Generates a vector of random variates from a Binomial distribution with probability, f (X),

defined by:

f (X) =
M !P X (1 – P)(M –X)

X!(M – 1)!

(Note that SRANDBINOMIAL is the single precision version of DRANDBINOMIAL.
The argument lists of both routines are identical except that any double precision arguments of
DRANDBINOMIAL are replaced in SRANDBINOMIAL by single precision arguments - type
REAL in FORTRAN or type float in C).

DRANDBINOMIAL (N,M,P,STATE,X,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

INTEGER M
On input: number of trials.

Constraint: M ≥ 0.

DOUBLE PRECISION P
On input: probability of success.

Constraint: 0≤ P < 1.

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator being used

and as such its minimum length varies. Prior to calling DRANDBINOMIAL STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators], for

information on initialization of the STATE variable. On input: the current state of

the base generator.

On output: the updated state of the base generator.

INTEGER X(N)
On output: vector of variates from the specified distribution.

INTEGER INFO

[Output]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

, X = 0, 1, · · · , M

AMD Random Number Generator Library

Example:

C Generate 100 values from the Binomial distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

INTEGER M

DOUBLE PRECISION P

INTEGER X(N)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) M,P

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Binomial distribution

CALL DRANDBINOMIAL(N,M,P,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

X

DRANDGEOMETRIC / SRANDGEOMETRIC

Generates a vector of random variates from a Geometric distribution with probability, f (X),

defined by:

f (X) = P (1 – P) , X = 0, 1, · · ·

(Note that SRANDGEOMETRIC is the single precision version of DRANDGEOMET-
RIC. The argument lists of both routines are identical except that any double precision argu- ments
of DRANDGEOMETRIC are replaced in SRANDGEOMETRIC by single precision arguments –
type REAL in FORTRAN or type float in C).

DRANDGEOMETRIC (N,P,STATE,X,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

DOUBLE PRECISION P
On input: distribution parameter.

Constraint: 0≤ P < 1.

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator being

used and as such its minimum length varies. Prior to calling DRANDGEOMETRIC

STATE must have been initialized. See Section 3.1.1 [Initialization of the Base

Generators], for information on initialization of the STATE variable. On input:

the current state of the base generator.

On output: the updated state of the base generator.

INTEGER X(N)
On output: vector of variates from the specified distribution.

INTEGER INFO

[Output]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Geometric distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

DOUBLE PRECISION P

INTEGER X(N)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) P

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Geometric distribution

CALL DRANDGEOMETRIC(N,P,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

− −

− · · ·

DRANDHYPERGEOMETRIC / SRANDHYPERGEOMETRIC

Generates a vector of random variates from a Hypergeometric distribution with probability,

f (X), defined by:

 s!m!(p s)!(p m)!
f (X) = ,

X!(s – X)!(m – X)!(p – m – s + X)!p!

if X = max(0, m + s p), , min(l, m), otherwise f (X) = 0. Here p is the size of the population,

(NP), s is the size of the sample taken from the population, (NS) and m is the number of

labeled, or specified, items in the population, (M).

(Note that SRANDHYPERGEOMETRIC is the single precision version of DRAND-
HYPERGEOMETRIC. The argument lists of both routines are identical except that any
double precision arguments of DRANDHYPERGEOMETRIC are replaced in SRANDHY-
PERGEOMETRIC by single precision arguments - type REAL in FORTRAN or type float
in C).

DRANDHYPERGEOMETRIC (N,NP,NS,M,STATE,X,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

INTEGER NP
On input: size of population.

Constraint: NP≥ 0.

INTEGER NS
On input: size of sample being taken from population.

Constraint: 0≤ NS ≤ NP.

INTEGER M
On input: number of specified items in the population.

Constraint: 0≤ M ≤ NP.

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input]

[Input]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator being

used and as such its minimum length varies. Prior to calling

DRANDHYPERGEOMETRIC STATE must have been initialized. See Section 3.1.1

[Initialization of the Base Generators], for information on initialization of the

STATE variable.

On input: the current state of the base generator.

On output: the updated state of the base generator.

INTEGER X(N)
On output: vector of variates from the specified distribution.

INTEGER INFO

[Output]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Hypergeometric distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

INTEGER NP,NS,M

INTEGER X(N)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) NP,NS,M

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Hypergeometric distribution

CALL DRANDHYPERGEOMETRIC(N,NP,NS,M,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

(M + X − 1)!P (1 − P)
·

· ·

DRANDNEGATIVEBINOMIAL / SRANDNEGATIVEBINOMIAL

Generates a vector of random variates from a Negative Binomial distribution with proba-

bility f (X) defined by:

f (X) =
X M

, X = 0, 1,
X!(M – 1)!

(Note that SRANDNEGATIVEBINOMIAL is the single precision version of DRAND-
NEGATIVEBINOMIAL. The argument lists of both routines are identical except that any
double precision arguments of DRANDNEGATIVEBINOMIAL are replaced in SRAND-
NEGATIVEBINOMIAL by single precision arguments – type REAL in FORTRAN or type float
in C).

DRANDNEGATIVEBINOMIAL (N,M,P,STATE,X,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

INTEGER M
On input: number of failures.

Constraint: M ≥ 0.

DOUBLE PRECISION P
On input: probability of success.

Constraint: 0≤ P < 1.

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator being

used and as such its minimum length varies. Prior to calling

DRANDNEGATIVEBINOMIAL STATE must have been initialized. See Section 3.1.1

[Initialization of the Base Generators], for information on initialization of the

STATE variable.

On input: the current state of the base generator.

On output: the updated state of the base generator.

INTEGER X(N)
On output: vector of variates from the specified distribution.

INTEGER INFO

[Output]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

E
☛

xample:

C Generate 100 values from the Negative Binomial distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

INTEGER M

DOUBLE PRECISION P

INTEGER X(N)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) M,P

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Negative Binomial distribution

CALL DRANDNEGATIVEBINOMIAL(N,M,P,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

DRANDPOISSON / SRANDPOISSON

Generates a vector of random variates from a Poisson distribution with probability f (X)

defined by:

where λ is the mean of the distribution, LAMBDA.

(Note that SRANDPOISSON is the single precision version of DRANDPOISSON. The
argument lists of both routines are identical except that any double precision arguments of
DRANDPOISSON are replaced in SRANDPOISSON by single precision arguments – type
REAL in FORTRAN or type float in C).

DRANDPOISSON (N,LAMBDA,STATE,X,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

INTEGER M
On input: number of failures.

Constraint: M ≥ 0.

DOUBLE PRECISION LAMBDA
On input: mean of the distribution.

Constraint: LAMBDA≥ 0.

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator being used

and as such its minimum length varies. Prior to calling DRANDPOISSON STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators], for

information on initialization of the STATE variable. On input: the current state of

the base generator.

On output: the updated state of the base generator.

INTEGER X(N)
On output: vector of variates from the specified distribution.

INTEGER INFO

[Output]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Poisson distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

DOUBLE PRECISION LAMBDA

INTEGER X(N)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) LAMBDA

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Poisson distribution

CALL DRANDPOISSON(N,LAMBDA,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

· · ·

DRANDDISCRETEUNIFORM / SRANDDISCRETEUNIFORM

Generates a vector of random variates from a Uniform distribution with probability f (X)

defined by:

 (Note that SRANDDISCRETEUNIFORM is the single precision version of DRAND-
DISCRETEUNIFORM. The argument lists of both routines are identical except that any
double precision arguments of DRANDDISCRETEUNIFORM are replaced in SRANDDIS-
CRETEUNIFORM by single precision arguments - type REAL in FORTRAN or type float
in C).

DRANDDISCRETEUNIFORM (N,A,B,STATE,X,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

INTEGER A
On input: minimum for the distribution.

INTEGER B
On input: maximum for the distribution.

Constraint: B≥ A.

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator being

used and as such its minimum length varies. Prior to calling

DRANDDISCRETEUNIFORM STATE must have been initialized. See Section 3.1.1

[Initialization of the Base Generators], for information on initialization of the

STATE variable.

On input: the current state of the base generator.

On output: the updated state of the base generator.

INTEGER X(N)
On output: vector of variates from the specified distribution.

INTEGER INFO

[Output]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Uniform distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

INTEGER A,B

INTEGER X(N)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) A,B

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Uniform distribution

CALL DRANDDISCRETEUNIFORM(N,A,B,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

DRANDGENERALDISCRETE / SRANDGENERALDISCRETE

Takes a reference vector initialized via one of DRANDBINOMIALREFERENCE, DRANDGEOMETRIC

REFERENCE, DRANDHYPERGEOMETRICREFERENCE, DRANDNEGATIVEBINOMIALREFERENCE, DRAND

POISSONREFERENCE and generates a vector of random variates from it.

(Note that SRANDGENERALDISCRETE is the single precision version of DRAND-
GENERALDISCRETE. The argument lists of both routines are identical except that any
double precision arguments of DRANDGENERALDISCRETE are replaced in SRANDGEN-
ERALDISCRETE by single precision arguments - type REAL in FORTRAN or type float
in C).

DRANDGENERALDISCRETE (N,REF,STATE,X,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

DOUBLE PRECISION REF(*)

[SUBROUTINE]

[Input]

[Input]

On input: reference vector generated by one of the following: DRANDBINO-

MIALREFERENCE, DRANDGEOMETRICREFERENCE, DRANDHYPER-

GEOMETRICREFERENCE, DRANDNEGATIVEBINOMIALREFERENCE,

DRANDPOISSONREFERENCE.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being

used and as such its minimum length varies. Prior to calling

DRANDGENERALDISCRETE STATE must have been initialized. See Section 3.1.1

[Initialization of the Base Generators], for information on initialization of the

STATE variable.

On input: the current state of the base generator.

On output: the updated state of the base generator.

INTEGER X(N)
On output: vector of variates from the specified distribution.

INTEGER INFO

[Output]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −I on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Binomial distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

INTEGER M

DOUBLE PRECISION P

INTEGER X(N)

INTEGER LREF

DOUBLE PRECISION REF(1000)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) M,P

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector

LREF = 1000

CALL DRANDBINOMIALREFERENCE(M,P,REF,LREF,INFO)

C Generate N variates from the Binomial distribution

CALL DRANDGENERALDISCRETE(N,REF,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

−
−

−

DRANDBINOMIALREFERENCE / SRANDBINOMIALREFERENCE

Initializes a reference vector for use with DRANDGENERALDISCRETE. Reference vector is for a

Binomial distribution with probability, f (X), defined by:

(Note that SRANDBINOMIALREFERENCE is the single precision version of DRAND-
BINOMIALREFERENCE. The argument lists of both routines are identical except that any double
precision arguments of DRANDBINOMIALREFERENCE are replaced in SRAND-
BINOMIALREFERENCE by single precision arguments - type REAL in FORTRAN or
type float in C).

DRANDBINOMIALREFERENCE (M,P,REF,LREF,INFO)

INTEGER M
On input: number of trials.

Constraint: M ≥ 0.

DOUBLE PRECISION P
On input: probability of success.

Constraint: 0≤ P < 1.

DOUBLE PRECISION REF(LREF)

[SUBROUTINE]

[Input]

[Input]

[Output]

On output: if INFO returns with a value of 0 then REF contains reference infor-

mation required to generate values from a Binomial distribution using DRAND-

GENERALDISCRETE.

INTEGER LREF [Input/Output]

On input: either the length of the reference vector REF, or 1.

On output: if LREF = 1 on input, then LREF is set to the recommended

length of the reference vector and the routine returns. Otherwise LREF is left

unchanged.

INTEGER INFO [Output]

On output: INFO is an error indicator. If INFO = I on exit, the i-th argument had

an illegal value. If INFO = 1 on exit, then LREF has been set to the recommended

length for the reference vector REF. If INFO = 0 then the reference vector, REF,

has been successfully initialized.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Binomial distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

INTEGER M

DOUBLE PRECISION P

INTEGER X(N)

INTEGER LREF

DOUBLE PRECISION REF(1000)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) M,P

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector

LREF = 1000

CALL DRANDBINOMIALREFERENCE(M,P,REF,LREF,INFO)

C Generate N variates from the Binomial distribution

CALL DRANDGENERALDISCRETE(N,REF,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

X

−
−

−

DRANDGEOMETRICREFERENCE / SRANDGEOMETRICREFERENCE

Initializes a reference vector for use with DRANDGENERALDISCRETE. Reference vector is for a

Geometric distribution with probability, f (X), defined by:

f (X) = P (1 – P) , X = 0, 1, · · ·

(Note that SRANDGEOMETRICREFERENCE is the single precision version of
DRANDGEOMETRICREFERENCE. The argument lists of both routines are identical except
that any double precision arguments of DRANDGEOMETRICREFERENCE are replaced in
SRANDGEOMETRICREFERENCE by single precision arguments - type REAL in
FORTRAN or type float in C).

DRANDGEOMETRICREFERENCE (P,REF,LREF,INFO)

DOUBLE PRECISION P
On input: distribution parameter.

Constraint: 0≤ P < 1.

DOUBLE PRECISION REF(LREF)

[SUBROUTINE]

[Input]

[Output]

On output: if INFO returns with a value of 0 then REF contains reference information

required to generate values from a Geometric distribution using

DRANDGENERALDISCRETE.

INTEGER LREF [Input/Output]

On input: either the length of the reference vector REF, or 1.

On output: if LREF = 1 on input, then LREF is set to the recommended

length of the reference vector and the routine returns. Otherwise LREF is left

unchanged.

INTEGER INFO [Output]

On output: INFO is an error indicator. If INFO = I on exit, the i-th argument had

an illegal value. If INFO = 1 on exit, then LREF has been set to the recommended

length for the reference vector REF. If INFO = 0 then the reference vector, REF,

has been successfully initialized.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Geometric distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

DOUBLE PRECISION P

INTEGER X(N)

INTEGER LREF

DOUBLE PRECISION REF(1000)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) P

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector

LREF = 1000

CALL DRANDGEOMETRICREFERENCE(P,REF,LREF,INFO)

C Generate N variates from the Geometric distribution

CALL DRANDGENERALDISCRETE(N,REF,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

−
−

−

DRANDHYPERGEOMETRICREFERENCE / SRANDHYPERGEOMETRICREFERENCE

Initializes a reference vector for use with DRANDGENERALDISCRETE. Reference vector is for a

Hypergeometric distribution with probability, f (X), defined by:

if X = max(0, m + s – p),…., min(l, m), otherwise f (X) = 0. Here p is the size of the

population, (NP), s is the size of the sample taken from the population, (NS) and m is the

number of labeled, or specified, items in the population, (M).

(Note that SRANDHYPERGEOMETRICREFERENCE is the single precision version of
DRANDHYPERGEOMETRICREFERENCE. The argument lists of both routines are identical
except that any double precision arguments of DRANDHYPERGEOMETRICREF- ERENCE are
replaced in SRANDHYPERGEOMETRICREFERENCE by single precision arguments – type
REAL in FORTRAN or type float in C).

DRANDHYPERGEOMETRICREFERENCE (NP,NS,M,REF,LREF,INFO)

INTEGER NP
On input: size of population.

Constraint: NP≥ 0.

INTEGER NS
On input: size of sample being taken from population.

Constraint: 0≤ NS ≤ NP.

INTEGER M
On input: number of specified items in the population.

Constraint: 0≤ M ≤ NP.

DOUBLE PRECISION REF(LREF)

[SUBROUTINE]

[Input]

[Input]

[Input]

[Output]

On output: if INFO returns with a value of 0 then REF contains reference information

required to generate values from a Hypergeometric distribution using

DRANDGENERALDISCRETE.

INTEGER LREF [Input/Output]

On input: either the length of the reference vector REF, or 1.

On output: if LREF = 1 on input, then LREF is set to the recommended

length of the reference vector and the routine returns. Otherwise LREF is left

unchanged.

INTEGER INFO [Output]

On output: INFO is an error indicator. If INFO = I on exit, the i-th argument had

an illegal value. If INFO = 1 on exit, then LREF has been set to the recommended

length for the reference vector REF. If INFO = 0 then the reference vector, REF,

has been successfully initialized.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Hypergeometric distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

INTEGER NP, NS,M

INTEGER X(N)

INTEGER LREF

DOUBLE PRECISION REF(1000)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) NP, NS,M

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector

LREF = 1000

CALL DRANDHYPERGEOMETRICREFERENCE(NP, NS,M,REF,LREF,INFO)

C Generate N variates from the Hypergeometric distribution

CALL DRANDGENERALDISCRETE(N,REF,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

X M

−
−

−

DRANDNEGATIVEBINOMIALREFERENCE / SRANDNEGATIVEBINOMIALREFERENCE

Initializes a reference vector for use with DRANDGENERALDISCRETE. Reference vector is for a

Negative Binomial distribution with probability f (X) defined by:

(M + X – 1)!P (1 – P)
f (X) = , X = 0, 1,

X!(M – 1)!

(Note that SRANDNEGATIVEBINOMIALREFERENCE is the single precision version
of DRANDNEGATIVEBINOMIALREFERENCE. The argument lists of both routines are
identical except that any double precision arguments of DRANDNEGATIVEBINOMIAL-
REFERENCE are replaced in SRANDNEGATIVEBINOMIALREFERENCE by single pre-
cision arguments – type REAL in FORTRAN or type float in C).

DRANDNEGATIVEBINOMIALREFERENCE (M,P,REF,LREF,INFO)

INTEGER M
On input: number of failures.

Constraint: M ≥ 0.

DOUBLE PRECISION P
On input: probability of success.

Constraint: 0≤ P < 1.

DOUBLE PRECISION REF(LREF)

[SUBROUTINE]

[Input]

[Input]

[Output]

On output: if INFO returns with a value of 0 then REF contains reference information

required to generate values from a Negative Binomial distribution using

DRANDGENERALDISCRETE.

INTEGER LREF [Input/Output]

On input: either the length of the reference vector REF, or 1.

On output: if LREF = 1 on input, then LREF is set to the recommended

length of the reference vector and the routine returns. Otherwise LREF is left

unchanged.

INTEGER INFO [Output]

On output: INFO is an error indicator. If INFO = i on exit, the i-th argument had

an illegal value. If INFO = 1 on exit, then LREF has been set to the recommended

length for the reference vector REF. If INFO = 0 then the reference vector, REF,

has been successfully initialized.

· · ·

AMD Random Number Generator Library

E
☛

xample:

C Generate 100 values from the Negative Binomial distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

INTEGER M

DOUBLE PRECISION P

INTEGER X(N)

INTEGER LREF

DOUBLE PRECISION REF(1000)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) M,P

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector

LREF = 1000

CALL DRANDNEGATIVEBINOMIALREFERENCE(M,P,REF,LREF,INFO)

C Generate N variates from the Negative Binomial distribution

CALL DRANDGENERALDISCRETE(N,REF,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

−
−

−

DRANDPOISSONREFERENCE / SRANDPOISSONREFERENCE

Initializes a reference vector for use with DRANDGENERALDISCRETE. Reference vector is for a

Poisson distribution with probability f (X) defined by:

where λ is the mean of the distribution, LAMBDA.

(Note that SRANDPOISSONREFERENCE is the single precision version of DRAND-
POISSONREFERENCE. The argument lists of both routines are identical except that any
double precision arguments of DRANDPOISSONREFERENCE are replaced in SRAND-
POISSONREFERENCE by single precision arguments - type REAL in FORTRAN or type float
in C).

DRANDPOISSONREFERENCE (LAMBDA,REF,LREF,INFO)

INTEGER M
On input: number of failures.

Constraint: M ≥ 0.

DOUBLE PRECISION LAMBDA
On input: mean of the distribution.

Constraint: LAMBDA≥ 0.

DOUBLE PRECISION REF(LREF)

[SUBROUTINE]

[Input]

[Input]

[Output]

On output: if INFO returns with a value of 0 then REF contains reference infor-

mation required to generate values from a Poisson distribution using DRAND-

GENERALDISCRETE.

INTEGER LREF [Input/Output]

On input: either the length of the reference vector REF, or 1.

On output: if LREF = 1 on input, then LREF is set to the recommended

length of the reference vector and the routine returns. Otherwise LREF is left

unchanged.

INTEGER INFO [Output]

On output: INFO is an error indicator. If INFO = i on exit, the i-th argument had

an illegal value. If INFO = 1 on exit, then LREF has been set to the recommended

length for the reference vector REF. If INFO = 0 then the reference vector, REF,

has been successfully initialized.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Poisson distribution

INTEGER LSTATE,N

PARAMETER (LSTATE=16,N=100)

INTEGER I,INFO,SEED(1),STATE(LSTATE)

DOUBLE PRECISION LAMBDA

INTEGER X(N)

INTEGER LREF

DOUBLE PRECISION REF(1000)

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) LAMBDA

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector

LREF = 1000

CALL DRANDPOISSONREFERENCE(LAMBDA,REF,LREF,INFO)

C Generate N variates from the Poisson distribution

CALL DRANDGENERALDISCRETE(N,REF,STATE,X,INFO)

C Print the results

WRITE(6,*) (X(I),I=1,N)

AMD Random Number Generator Library

3.3.3 Continuous Multivariate Distributions

DRANDMULTINORMAL / SRANDMULTINORMAL

Generates an array of random variates from a Multivariate Normal distribution with prob-

ability density function, f (X), where:

where µ is the vector of means, XMU.

(Note that SRANDMULTINORMAL is the single precision version of DRANDMULTI-
NORMAL. The argument lists of both routines are identical except that any double precision
arguments of DRANDMULTINORMAL are replaced in SRANDMULTINORMAL by single
precision arguments - type REAL in FORTRAN or type float in C).

DRANDMULTINORMAL (N,M,XMU,C,LDC,STATE,X,LDX,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

INTEGER M
On input: number of dimensions for the distribution.

Constraint: M ≥ 1.

DOUBLE PRECISION XMU(M)
On input: vector of means for the distribution.

DOUBLE PRECISION C(LDC,M)
On input: variance / covariance matrix for the distribution.

INTEGER LDC
On input: leading dimension of C in the calling routine.

Constraint: LDC ≥ M .

INTEGER STATE(*)

[SUBROUTINE]

[Input]

[Input]

[Input]

[Input]

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator being

used and as such its minimum length varies. Prior to calling DRANDMULTINORMAL

STATE must have been initialized. See Section 3.1.1 [Initialization of the Base

Generators], for information on initialization of the STATE variable. On input:

the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(LDX,M)
On output: matrix of variates from the specified distribution.

INTEGER LDX
On input: leading dimension of X in the calling routine.

Constraint: LDX ≥ N .

INTEGER INFO

[Output]

[Input]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the

C Multivariate Normal distribution

INTEGER LSTATE,N, MM

PARAMETER (LSTATE=16,N=100,MM=10)

INTEGER I,J,INFO,SEED(1),STATE(LSTATE)

INTEGER LDC,LDX,M

DOUBLE PRECISION X(N,MM),XMU(MM),C(MM,MM)

C Set array sizes

LDC = MM

LDX = N

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) M

READ(5,*) (XMU(I),I=1,M)

DO 20 I = 1,M

READ(5,*) (C(I,J),J=1,M)

20 CONTINUE

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the

C Multivariate Normal distribution

CALL DRANDMULTINORMAL(N,M,XMU,C,LDC,STATE,X,LDX,INFO)

C Print the results

DO 40 I = 1,N

WRITE(6,*) (X(I,J),J=1,M)

40 CONTINUE

AMD Random Number Generator Library

DRANDMULTISTUDENTST / SRANDMULTISTUDENTST

Generates an array of random variates from a Multivariate Students T distribution with

probability density function, f (X), where:

where µ is the vector of means, XMU and ν is the degrees of freedom, DF.

(Note that SRANDMULTISTUDENTST is the single precision version of DRANDMUL-
TISTUDENTST. The argument lists of both routines are identical except that any double
precision arguments of DRANDMULTISTUDENTST are replaced in SRANDMULTISTU-
DENTST by single precision arguments - type REAL in FORTRAN or type float in C).

DRANDMULTISTUDENTST (N,M,DF,XMU,C,LDC,STATE,X,LDX,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

INTEGER M
On input: number of dimensions for the distribution.

Constraint: M ≥ 1.

INTEGER DF
On input: degrees of freedom.

Constraint: DF> 2.

DOUBLE PRECISION XMU(M)
On input: vector of means for the distribution.

DOUBLE PRECISION C(LDC,M)

[SUBROUTINE]

[Input]

[Input]

[Input]

[Input]

[Input]

On input: matrix defining the variance / covariance for the distribution. The

variance / covariance matrix is given by ν C, where ν are the degrees of

freedom, DF.

INTEGER LDC

ν−2

[Input]

On input: leading dimension of C in the calling routine.

Constraint: LDC ≥ M .

INTEGER STATE(*)

[Input/Output]

The STATE vector holds information on the state of the base generator being

used and as such its minimum length varies. Prior to calling

DRANDMULTISTUDENTST STATE must have been initialized. See Section 3.1.1

[Initialization of the Base Generators], for information on initialization of the

STATE variable.

On input: the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(LDX,M)
On output: matrix of variates from the specified distribution.

[Output]

AMD Random Number Generator Library

INTEGER LDX
On input: leading dimension of X in the calling routine.

Constraint: LDX ≥ N .

INTEGER INFO

[Input]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −i on exit, the i-th argument had an illegal value.

Example:

C Generate 100 values from the

C Multivariate Students T distribution

INTEGER LSTATE,N, MM

PARAMETER (LSTATE=16,N=100,MM=10)

INTEGER I,J,INFO,SEED(1),STATE(LSTATE)

INTEGER LDC,LDX,M,DF

DOUBLE PRECISION X(N,MM),XMU(MM),C(MM,MM)

C Set array sizes

LDC = MM

LDX = N

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) M,DF

READ(5,*) (XMU(I),I=1,M)

DO 20 I = 1,M

READ(5,*) (C(I,J),J=1,M)

20 CONTINUE

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the

C Multivariate Students T distribution

CALL DRANDMULTISTUDENTST(N,M,DF,XMU,C,LDC,STATE,X,LDX,INFO)

C Print the results

DO 40 I = 1,N

WRITE(6,*) (X(I,J),J=1,M)

40 CONTINUE

AMD Random Number Generator Library

DRANDMULTINORMALR / SRANDMULTINORMALR

Generates an array of random variates from a Multivariate Normal distribution using a

reference vector initialized by DRANDMULTINORMALREFERENCE.

(Note that SRANDMULTINORMALR is the single precision version of DRANDMULTI-
NORMALR. The argument lists of both routines are identical except that any double preci- sion
arguments of DRANDMULTINORMALR are replaced in SRANDMULTINORMALR by
single precision arguments - type REAL in FORTRAN or type float in C).

DRANDMULTINORMALR (N,REF,STATE,X,LDX,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

DOUBLE PRECISION REF(*)

[SUBROUTINE]

[Input]

[Input]

On input: a reference vector generated by DRANDMULTINORMALREFER-

ENCE.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator

being used and as such its minimum length varies. Prior to calling

DRANDMULTINORMALR STATE must have been initialized. See Section 3.1.1

[Initialization of the Base Generators], for information on initialization of the

STATE variable.

On input: the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(LDX,M)
On output: matrix of variates from the specified distribution.

INTEGER LDX
On input: leading dimension of X in the calling routine.

Constraint: LDX ≥ N .

INTEGER INFO

[Output]

[Input]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the

C Multivariate Normal distribution

INTEGER LSTATE,N, MM

PARAMETER (LSTATE=16,N=100,MM=10)

INTEGER I,J,INFO,SEED(1),STATE(LSTATE)

INTEGER LDC,LDX,M

DOUBLE PRECISION X(N,MM),XMU(MM),C(MM,MM)

INTEGER LREF

DOUBLE PRECISION REF(1000)

C Set array sizes

LDC = MM

LDX = N

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) M

READ(5,*) (XMU(I),I=1,M)

DO 20 I = 1,M

READ(5,*) (C(I,J),J=1,M)

20 CONTINUE

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector

LREF = 1000

CALL DRANDMULTINORMALREFERENCE(M,XMU,C,LDC,REF,LREF,INFO)

C Generate N variates from the

C Multivariate Normal distribution

CALL DRANDMULTINORMALR(N,REF,STATE,X,LDX,INFO)

C Print the results

DO 40 I = 1,N

WRITE(6,*) (X(I,J),J=1,M)

40 CONTINUE

AMD Random Number Generator Library

DRANDMULTISTUDENTSTR / SRANDMULTISTUDENTSTR

Generates an array of random variates from a Multivariate Students T distribution using a

reference vector initialized by DRANDMULTISTUDENTSTREFERENCE.

(Note that SRANDMULTISTUDENTSTR is the single precision version of DRAND-
MULTISTUDENTSTR. The argument lists of both routines are identical except that any
double precision arguments of DRANDMULTISTUDENTSTR are replaced in SRAND-
MULTISTUDENTSTR by single precision arguments - type REAL in FORTRAN or type
float in C).

DRANDMULTISTUDENTSTR (N,REF,STATE,X,LDX,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

DOUBLE PRECISION REF(*)

[SUBROUTINE]

[Input]

[Input]

On input: a reference vector generated by DRANDMULTISTUDENTSTREF-

ERENCE.

INTEGER STATE(*) [Input/Output]

The STATE vector holds information on the state of the base generator being

used and as such its minimum length varies. Prior to calling

DRANDMULTISTUDENTSTR STATE must have been initialized. See Section 3.1.1

[Initialization of the Base Generators], for information on initialization of the

STATE variable.

On input: the current state of the base generator.

On output: the updated state of the base generator.

DOUBLE PRECISION X(LDX,M)
On output: matrix of variates from the specified distribution.

INTEGER LDX
On input: leading dimension of X in the calling routine.

Constraint: LDX ≥ N .

INTEGER INFO

[Output]

[Input]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the

C Multivariate Students T distribution

INTEGER LSTATE,N, MM

PARAMETER (LSTATE=16,N=100,MM=10)

INTEGER I,J,INFO,SEED(1),STATE(LSTATE)

INTEGER LDC,LDX,M,DF

DOUBLE PRECISION X(N,MM),XMU(MM),C(MM,MM)

INTEGER LREF

DOUBLE PRECISION REF(1000)

C Set array sizes

LDC = MM

LDX = N

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) M,DF

READ(5,*) (XMU(I),I=1,M)

DO 20 I = 1,M

READ(5,*) (C(I,J),J=1,M)

20 CONTINUE

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector

LREF = 1000

CALL DRANDMULTISTUDENTSTREFERENCE(M,DF,XMU,C,LDC,REF,LREF,INFO)

C Generate N variates from the

C Multivariate Students T distribution

CALL DRANDMULTISTUDENTSTR(N,REF,STATE,X,LDX,INFO)

C Print the results

DO 40 I = 1,N

WRITE(6,*) (X(I,J),J=1,M)

40 CONTINUE

AMD Random Number Generator Library

−
−

−

DRANDMULTINORMALREFERENCE / SRANDMULTINORMALREFERENCE

Initializes a reference vector for use with DRANDMULTINORMALR. Reference vector is for a

Multivariate Normal distribution with probability density function, f (X), where:

where µ is the vector of means, XMU.

(Note that SRANDMULTINORMALREFERENCE is the single precision version of
DRANDMULTINORMALREFERENCE. The argument lists of both routines are identi- cal
except that any double precision arguments of DRANDMULTINORMALREFERENCE are
replaced in SRANDMULTINORMALREFERENCE by single precision arguments - type REAL
in FORTRAN or type float in C).

DRANDMULTINORMALREFERENCE (M,XMU,C,LDC,REF,LREF,INFO)

INTEGER M
On input: number of dimensions for the distribution.

Constraint: M ≥ 1.

DOUBLE PRECISION XMU(M)
On input: vector of means for the distribution.

DOUBLE PRECISION C(LDC,M)
On input: variance / covariance matrix for the distribution.

INTEGER LDC
On input: leading dimension of C in the calling routine.

Constraint: LDC ≥ M .

DOUBLE PRECISION REF(LREF)

[SUBROUTINE]

[Input]

[Input]

[Input]

[Input]

[Output]

On output: if INFO returns with a value of 0 then REF contains reference information

required to generate values from a Multivariate Normal distribution using

DRANDMULTINORMALR.

INTEGER LREF [Input/Output]

On input: either the length of the reference vector REF, or 1.

On output: if LREF = 1 on input, then LREF is set to the recommended

length of the reference vector and the routine returns. Otherwise LREF is left

unchanged.

INTEGER INFO [Output]

On output: INFO is an error indicator. If INFO = i on exit, the i-th argument had

an illegal value. If INFO = 1 on exit, then LREF has been set to the recommended

length for the reference vector REF. If INFO = 0 then the reference vector, REF,

has been successfully initialized.

AMD Random Number Generator Library

Example:

C Generate 100 values from the

C Multivariate Normal distribution

INTEGER LSTATE,N, MM

PARAMETER (LSTATE=16,N=100,MM=10)

INTEGER I,J,INFO,SEED(1),STATE(LSTATE)

INTEGER LDC,LDX,M

DOUBLE PRECISION X(N,MM),XMU(MM),C(MM,MM)

INTEGER LREF

DOUBLE PRECISION REF(1000)

C Set array sizes

LDC = MM

LDX = N

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) M

READ(5,*) (XMU(I),I=1,M)

DO 20 I = 1,M

READ(5,*) (C(I,J),J=1,M)

20 CONTINUE

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector

LREF = 1000

CALL DRANDMULTINORMALREFERENCE(M,XMU,C,LDC,REF,LREF,INFO)

C Generate N variates from the

C Multivariate Normal distribution

CALL DRANDMULTINORMALR(N,REF,STATE,X,LDX,INFO)

C Print the results

DO 40 I = 1,N

WRITE(6,*) (X(I,J),J=1,M)

40 CONTINUE

AMD Random Number Generator Library

−
−

DRANDMULTISTUDENTSTREFERENCE / SRANDMULTISTUDENTSTREFERENCE

Initializes a reference vector for use with DRANDMULTISTUDENTSTR. Reference vector is for a

Multivariate Students T distribution with probability density function, f (X), where:

where µ is the vector of means, XMU and ν is the degrees of freedom, DF.

(Note that SRANDMULTISTUDENTSTREFERENCE is the single precision version of
DRANDMULTISTUDENTSTREFERENCE. The argument lists of both routines are identical
except that any double precision arguments of DRANDMULTISTUDENTSTRE- FERENCE are
replaced in SRANDMULTISTUDENTSTREFERENCE by single precision arguments - type
REAL in FORTRAN or type float in C).

DRANDMULTISTUDENTSREFERENCE

(M,DF,XMU,C,LDC,REF,LREF,INFO)

INTEGER M
On input: number of dimensions for the distribution.

Constraint: M ≥ 1.

INTEGER DF
On input: degrees of freedom.

Constraint: DF> 2.

DOUBLE PRECISION XMU(M)
On input: vector of means for the distribution.

DOUBLE PRECISION C(LDC,M)

[SUBROUTINE]

[Input]

[Input]

[Input]

[Input]

On input: matrix defining the variance / covariance for the distribution. The

variance / covariance matrix is given by ν C, where ν are the degrees of

freedom, DF.

INTEGER LDC

ν−2

[Input]

On input: leading dimension of C in the calling routine.

Constraint: LDC ≥ M .

DOUBLE PRECISION REF(LREF)

[Output]

On output: if INFO returns with a value of 0 then REF contains reference infor-

mation required to generate values from a Multivariate Students T distribution

using DRANDMULTISTUDENTSTR.

INTEGER LREF [Input/Output]

On input: either the length of the reference vector REF, or 1.

On output: if LREF = 1 on input, then LREF is set to the recommended

length of the reference vector and the routine returns. Otherwise LREF is left

unchanged.

AMD Random Number Generator Library

−

INTEGER INFO [Output]

On output: INFO is an error indicator. If INFO = i on exit, the i-th argument had

an illegal value. If INFO = 1 on exit, then LREF has been set to the recommended

length for the reference vector REF. If INFO = 0 then the reference vector, REF,

has been successfully initialized.

Example:

C Generate 100 values from the

C Multivariate Students T distribution

INTEGER LSTATE,N, MM

PARAMETER (LSTATE=16,N=100,MM=10)

INTEGER I,J,INFO,SEED(1),STATE(LSTATE)

INTEGER LDC,LDX,M,DF

DOUBLE PRECISION X(N,MM),XMU(MM),C(MM,MM)

INTEGER LREF

DOUBLE PRECISION REF(1000)

C Set array sizes

LDC = MM

LDX = N

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) M,DF

READ(5,*) (XMU(I),I=1,M)

DO 20 I = 1,M

READ(5,*) (C(I,J),J=1,M)

20 CONTINUE

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Initialize the reference vector

LREF = 1000

CALL DRANDMULTISTUDENTSTREFERENCE(M,DF,XMU,C,LDC,REF,LREF,INFO)

C Generate N variates from the

C Multivariate Students T distribution

CALL DRANDMULTISTUDENTSTR(N,REF,STATE,X,LDX,INFO)

C Print the results

DO 40 I = 1,N

WRITE(6,*) (X(I,J),J=1,M)

40 CONTINUE

AMD Random Number Generator Library

3.3.4 Discrete Multivariate Distributions

DRANDMULTINOMIAL / SRANDMULTINOMIAL

Generates a matrix of random variates from a Multinomial distribution with probability,

f (X), defined by:

where X = {X1, X2, · · · , XK }, P = {P1, P2, · · · , PK },∑ 𝑋𝑖
𝑘
𝑖=1 = 1

and

 ∑ 𝑃𝑖
𝑘
𝑖=1 = 1.

(Note that SRANDMULTINOMIAL is the single precision version of DRANDMULTI-
NOMIAL. The argument lists of both routines are identical except that any double precision
arguments of DRANDMULTINOMIAL are replaced in SRANDMULTINOMIAL by single
precision arguments - type REAL in FORTRAN or type float in C).

DRANDMULTINOMIAL (N,M,P,K,STATE,X,LDX,INFO)

INTEGER N
On input: number of variates required.

Constraint: N ≥ 0.

INTEGER M
On input: number of trials.

Constraint: M ≥ 0.

DOUBLE PRECISION P(K)

[SUBROUTINE]

[Input]

[Input]

[Input]

On input: vector of probabilities for each of the K possible outcomes.

Constraint: 0 ≤ Pi ≤ 1, i = 1, 2, · · · ,K, ∑ 𝑃𝑖
𝑘
𝑖=1 = 1

INTEGER K
On input: number of possible outcomes.

Constraint: K≥ 2.

INTEGER STATE(*)

 = 1.

[Input]

[Input/Output]

The STATE vector holds information on the state of the base generator being used

and as such its minimum length varies. Prior to calling DRANDBINOMIAL STATE
must have been initialized. See Section 3.1.1 [Initialization of the Base Generators], for

information on initialization of the STATE variable. On input: the current state of

the base generator.

On output: the updated state of the base generator.

INTEGER X(LDX,K)
On output: matrix of variates from the specified distribution.

INTEGER LDX
On input: leading dimension of X in the calling routine.

Constraint: LDX ≥ N .

INTEGER INFO

[Output]

[Input]

[Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.

If INFO = −i on exit, the i-th argument had an illegal value.

AMD Random Number Generator Library

Example:

C Generate 100 values from the Multinomial distribution

INTEGER LSTATE,N,M

PARAMETER (LSTATE=16,N=100,M=10)

INTEGER I,J,INFO,SEED(1),STATE(LSTATE)

INTEGER LDX,K

INTEGER X(N,M)

DOUBLE PRECISION P(M)

C Set array sizes

LDX = N

C Set the seed

SEED(1) = 1234

C Read in the distributional parameters

READ(5,*) K

READ(5,*) (P(I),I=1,K)

C Initialize the STATE vector

CALL DRANDINITIALIZE(1,1,SEED,1,STATE,LSTATE,INFO)

C Generate N variates from the Multinomial distribution

CALL DRANDMULTINOMIAL(N,M,P,K,STATE,X,LDX,INFO)

C Print the results

DO 20 I = 1,N

WRITE(6,*) (X(I,J),J=1,K)

20 CONTINUE

AMD Random Number Generator Library

4 References
• [1] D. E. Knuth, The Art of Computer Programming Addison-Wesley, 1997.

• [2] J. Banks, Handbook on Simulation, Wiley, 1998.

[3] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, Chapter

5, CRC Press, 1996.

[4] Chapter Introduction G05 - Random Number Generators The NAG Fortran Library
Manual, Mark 21 Numerical Algorithms Group, 2005.

[5] N. M. Maclaren, The generation of multiple independent sequences of pseudoran-

dom numbers, Appl. Statist., 1989, 38, 351-359.

[6] M. Matsumoto and T. Nishimura, Mersenne twister: A 623-dimensionally equidis- tributed

uniform pseudorandom number generator, ACM Transactions on Modelling and
Computer Simulations, 1998.

[7] P. L’Ecuyer, Good parameter sets for combined multiple recursive random number

generators, Operations Research, 1999, 47, 159-164.

[8] P. L’Ecuyer and R. Simard, TestU01: A Software Library in ANSI C for Empirical

Testing of Random Number Generators, Departement d’Informatique et de Recherche

Operationnelle, Universite de Montreal, 2002. Software and user’s guide available at
http://www.iro.umontreal.ca/~lecuyer

•

•

•

•

•

•

http://www.iro.umontreal.ca/~lecuyer
http://www.iro.umontreal.ca/~lecuyer

