The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD’s Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, and combinations thereof, are trademarks of Advanced Micro Devices, Inc.

Linux is a registered trademark of Linus Torvalds.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

PCIe and PCI Express are registered trademarks of PCI-SIG.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
List of Figures

Figure 1. Format of CPUID Fm0000_0001_EAX...8
List of Tables

Table 1. Arithmetic and Logic Operators... 7
Table 2. CPUID Values for AMD Family 17h Models 30h-3Fh SP3 Processor Revisions................................. 8
Table 3. OSVW ID Length Register.. 9
Table 4. OSVW Status Register.. 9
Table 5. Cross Reference of Product Revision to OSVW ID................................. 9
Table 6. Cross-Reference of Processor Revision to Errata.................................. 11
Table 7. Cross-Reference of Errata to Package Type... 12
Table 8. Cross-Reference of Errata to Processor Segments................................. 13
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 2019</td>
<td>0.74</td>
<td>Initial public release.</td>
</tr>
</tbody>
</table>
Overview

The purpose of the Revision Guide for AMD Family 17h Models 30h-3Fh is to communicate updated product information to designers of computer systems and software developers. This revision guide includes information on the following products:

- AMD EPYC™ 7002 Series Processors

Feature support varies by brands and OPNs (Ordering Part Number). To determine the features supported by your processor, contact your customer representative.

This guide consists of these major sections:

- **Processor Identification** shows how to determine the processor revision and workaround requirements, and to construct, program, and display the processor name string.
- **Product Errata** provides a detailed description of product errata, including potential effects on system operation and suggested workarounds. An erratum is defined as a deviation from the product's specification, and as such may cause the behavior of the processor to deviate from the published specifications.
- **Documentation Support** provides a listing of available technical support resources.

Revision Guide Policy

Occasionally, AMD identifies product errata that cause the processor to deviate from published specifications. Descriptions of identified product errata are designed to assist system and software designers in using the processors described in this revision guide. This revision guide may be updated periodically.
Conventions

Numbering

- **Binary numbers.** Binary numbers are indicated by appending a "b" at the end, e.g., 0110b.
- **Decimal numbers.** Unless specified otherwise, all numbers are decimal. This rule does not apply to the register mnemonics.
- **Hexadecimal numbers.** Hexadecimal numbers are indicated by appending an "h" to the end, e.g., 45F8h.
- **Underscores in numbers.** Underscores are used to break up numbers to make them more readable. They do not imply any operation. e.g., 0110_1100b.
- **Undefined digit.** An undefined digit, in any radix, is notated as a lower case "x".

Arithmetic and Logical Operators

In this document, formulas follow some Verilog conventions as shown in Table 1.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>Curly brackets are used to indicate a group of bits that are concatenated together. Each set of bits is separated by a comma. E.g., {Add[3:2], Xlate[3:0]} represents a 6-bit value; the two MSBs are Add[3:2] and the four LSBs are Xlate[3:0].</td>
</tr>
<tr>
<td></td>
<td>Bitwise OR operator. E.g. (01b</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>&</td>
<td>Bitwise AND operator. E.g. (01b & 10b == 00b).</td>
</tr>
<tr>
<td>&&</td>
<td>Logical AND operator. E.g. (01b && 10b == 1b); logical treats multibit operand as 1 if >=1 and produces a 1-bit result.</td>
</tr>
<tr>
<td>^</td>
<td>Bitwise exclusive-OR operator; sometimes used as "raised to the power of" as well, as indicated by the context in which it is used. E.g. (01b ^ 10b == 11b). E.g. (2^2 == 4).</td>
</tr>
<tr>
<td>~</td>
<td>Bitwise NOT operator (also known as one's complement). E.g. (~10b == 01b).</td>
</tr>
<tr>
<td>!</td>
<td>Logical NOT operator. E.g. (!10b == 0b); logical treats multibit operand as 1 if >=1 and produces a 1-bit result.</td>
</tr>
<tr>
<td>==</td>
<td>Logical "is equal to" operator.</td>
</tr>
<tr>
<td>!=</td>
<td>Logical "is not equal to" operator.</td>
</tr>
<tr>
<td><=</td>
<td>Less than or equal operator.</td>
</tr>
<tr>
<td>>=</td>
<td>Greater than or equal operator.</td>
</tr>
<tr>
<td>*</td>
<td>Arithmetic multiplication operator.</td>
</tr>
<tr>
<td>/</td>
<td>Arithmetic division operator.</td>
</tr>
<tr>
<td><<</td>
<td>Shift left first operand by the number of bits specified by the 2nd operand. E.g. (01b << 01b == 10b).</td>
</tr>
<tr>
<td>>></td>
<td>Shift right first operand by the number of bits specified by the 2nd operand. E.g. (10b >> 01b == 01b).</td>
</tr>
</tbody>
</table>

Register References and Mnemonics

In order to define errata workarounds it is sometimes necessary to reference processor registers. References to registers in this document use a mnemonic notation consistent with that defined in the Processor Programming Reference (PPR) for AMD Family 17 Model 30h-3Fh Processors, order# 55803.
Processor Identification

This section shows how to determine the processor revision.

Revision Determination

A processor revision is identified using a unique value that is returned in the EAX register after executing the CPUID instruction function 0000_0001h (CPUID Fn0000_0001_EAX). Figure 1 shows the format of the value from CPUID Fn0000_0001_EAX.

![Figure 1. Format of CPUID Fn0000_0001_EAX](image)

The following tables show the identification numbers from CPUID Fn0000_0001_EAX for each revision of the processor to each processor segment. "X" signifies that the revision has been used in the processor segment. "N/A" signifies that the revision has not been used in the processor segment.

| Table 2. CPUID Values for AMD Family 17h Models 30h-3Fh SP3 Processor Revisions |
|---------------------------------|---------------------------------|
| CPUID Fn0000_0001_EAX | AMD EPYC™ 7002 Series Processors |
| 00830F10h (Rome-B0) | X |

Mixed Processor Revision Support

AMD Family 17h processors with different revisions may not be mixed in a multiprocessor system.

Programming and Displaying the Processor Name String

This section, intended for system software programmers, describes how to program and display the 48-character processor name string that is returned by CPUID Fn8000_000[4:2]. The hardware or cold reset value of the processor name string is 48 ASCII NUL characters, so system software must program the processor name string before any general purpose application or operating system software uses the extended functions that read the name string. It is common practice for system software to display the processor name string and model number whenever it displays processor information during boot up.

Note: Motherboards that do not program the proper processor name string and model number will not pass AMD validation and will not be posted on the AMD Recommended Motherboard Web site.

The name string must be ASCII NUL terminated and the 48-character maximum includes that NUL character.
The processor name string is programmed by MSR writes to the six MSR addresses covered by the range MSRC001_00[35:30]h. Refer to the PPR for the format of how the 48-character processor name string maps to the 48 bytes contained in the six 64-bit registers of MSRC001_00[35:30].

The processor name string is read by CPUID reads to a range of CPUID functions covered by CPUID Fn8000_000[4:2]. Refer to CPUID Fn8000_000[4:2] in the PPR for the 48-character processor name string mapping to the 48 bytes contained in the twelve 32-bit registers of CPUID Fn8000_000[4:2].

Operating System Visible Workarounds
This section describes how to identify operating system visible workarounds.

MSRC001_0140 OS Visible Work-around MSR0 (OSVW_ID_Length)
This register, as defined in *AMD64 Architecture Programmer's Manual Volume 2: System Programming*, order# 24593, is used to specify the number of valid status bits within the OS Visible Work-around status registers.

The reset default value of this register is 0000_0000_0000_0000h.

System software shall program the OSVW_ID_Length to 0005h prior to hand-off to the OS.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:16</td>
<td>Reserved.</td>
</tr>
<tr>
<td>15:0</td>
<td>OSVW_ID_Length: OS visible work-around ID length. Read-write.</td>
</tr>
</tbody>
</table>

MSRC001_0141 OS Visible Work-around MSR1 (OSVW_Status)
This register, as defined in *AMD64 Architecture Programmer's Manual Volume 2: System Programming*, order# 24593, provides the status of the known OS visible errata. Known errata are assigned an OSVW_ID corresponding to the bit position within the valid status field.

Operating system software should use MSRC001_0140 to determine the valid length of the bit status field. For all valid status bits: 1=Hardware contains the erratum, and an OS software work-around is required or may be applied instead of a system software workaround. 0=Hardware has corrected the erratum, so an OS software work-around is not necessary.

The reset default value of this register is 0000_0000_0000_0000h.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:5</td>
<td>OswwStatusBits; Reserved. OS visible work-around status bits. Read-write.</td>
</tr>
<tr>
<td>4</td>
<td>OswwId4; Reserved, must be zero.</td>
</tr>
<tr>
<td>3</td>
<td>OswwId3; Reserved, must be zero.</td>
</tr>
<tr>
<td>2</td>
<td>OswwId2; Reserved, must be zero.</td>
</tr>
<tr>
<td>1</td>
<td>OswwId1; Reserved, must be zero.</td>
</tr>
<tr>
<td>0</td>
<td>OswwId0; Reserved, must be zero.</td>
</tr>
</tbody>
</table>

System software shall program the state of the valid status bits as shown in Table 5 prior to hand-off to the OS.
Table 5. Cross Reference of Product Revision to OSVW ID

<table>
<thead>
<tr>
<th>CPUID Fn0000_0001_EAX (Mnemonic)</th>
<th>MSRC001_0141 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>00830F10h (Rome-B0)</td>
<td>0000_0000_0000_0000h</td>
</tr>
</tbody>
</table>
Product Errata

This section documents product errata for the processors. A unique tracking number for each erratum has been assigned within this document for user convenience in tracking the errata within specific revision levels. This table cross-references the revisions of the part to each erratum. "No fix planned" indicates that no fix is planned for current or future revisions of the processor.

Note: There may be missing errata numbers. Errata that do not affect this product family do not appear. In addition, errata that have been resolved from early revisions of the processor have been deleted, and errata that have been reconsidered may have been deleted or renumbered.

Table 6. Cross-Reference of Processor Revision to Errata

<table>
<thead>
<tr>
<th>No.</th>
<th>Errata Description</th>
<th>CPUID Func 0000h_0001h _EAX</th>
<th>00830F10h (Rome-B0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1140</td>
<td>Response Transaction May be Lost on Data Fabric</td>
<td>No fix planned</td>
<td></td>
</tr>
<tr>
<td>1150</td>
<td>PCIe® Incorrectly Updates Some AER (Advanced Error Reporting) Registers After Egress Blocking Error</td>
<td>No fix planned</td>
<td></td>
</tr>
<tr>
<td>1154</td>
<td>MOV SS Instructions May Take Multiple Breakpoints</td>
<td>No fix planned</td>
<td></td>
</tr>
<tr>
<td>1155</td>
<td>DMA or Peer-to-peer Accesses Using Guest Physical Addresses (GPAs) May Cause IOMMU Target Abort</td>
<td>No fix planned</td>
<td></td>
</tr>
<tr>
<td>1157</td>
<td>PCIe® Link Status May be Incorrect When Root Port Autonomous Changes to Gen4 Speed</td>
<td>No fix planned</td>
<td></td>
</tr>
<tr>
<td>1159</td>
<td>Writes to Base Frequency Register May be Ignored</td>
<td>No fix planned</td>
<td></td>
</tr>
<tr>
<td>1160</td>
<td>SdpParity and XiVictimQueue Mask Bits Incorrectly Mask Additional Errors</td>
<td>No fix planned</td>
<td></td>
</tr>
<tr>
<td>1163</td>
<td>Some MCA_MISC0 Bits May Fail to Persist Through Warm Reset</td>
<td>No fix planned</td>
<td></td>
</tr>
<tr>
<td>1165</td>
<td>The PCIe® Link May Accumulate Correctable Errors in Some Gen3 Mode Configurations</td>
<td>No fix planned</td>
<td></td>
</tr>
<tr>
<td>1166</td>
<td>The PCIe® Link May Accumulate Correctable Errors in Gen4 Link Width x2 Mode</td>
<td>No fix planned</td>
<td></td>
</tr>
<tr>
<td>1171</td>
<td>Requester ID May Be Set Incorrectly on Outbound PCIe® VDMs (Vendor Defined Messages)</td>
<td>No fix planned</td>
<td></td>
</tr>
<tr>
<td>1183</td>
<td>The Processor May Hang If it Receives INIT# While Already In the INIT# State</td>
<td>No fix planned</td>
<td></td>
</tr>
<tr>
<td>1185</td>
<td>PCIe® Receive Buffer Location May Be Incorrectly Overwritten</td>
<td>No fix planned</td>
<td></td>
</tr>
</tbody>
</table>
Cross-Reference of Errata to Package Type

This table cross-references the errata to each package type. "X" signifies that the erratum applies to the package type. An empty cell signifies that the erratum does not apply. An erratum may not apply to a package type due to a specific characteristic of the erratum, or it may be due to the affected silicon revision(s) not being used in this package.

Table 7.
Cross-Reference of Errata to Package Type

<table>
<thead>
<tr>
<th>Errata</th>
<th>Package Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1140</td>
<td>X</td>
</tr>
<tr>
<td>1150</td>
<td>X</td>
</tr>
<tr>
<td>1154</td>
<td>X</td>
</tr>
<tr>
<td>1155</td>
<td>X</td>
</tr>
<tr>
<td>1157</td>
<td>X</td>
</tr>
<tr>
<td>1159</td>
<td>X</td>
</tr>
<tr>
<td>1160</td>
<td>X</td>
</tr>
<tr>
<td>1163</td>
<td>X</td>
</tr>
<tr>
<td>1165</td>
<td>X</td>
</tr>
<tr>
<td>1166</td>
<td>X</td>
</tr>
<tr>
<td>1171</td>
<td>X</td>
</tr>
<tr>
<td>1183</td>
<td>X</td>
</tr>
<tr>
<td>1185</td>
<td>X</td>
</tr>
</tbody>
</table>
Cross-Reference of Errata to Processor Segments

This table cross-references the errata to each processor segment. "X" signifies that the erratum applies to the processor segment. An empty cell signifies that the erratum does not apply. An erratum may not apply to a processor segment due to a specific characteristic of the erratum, or it may be due to the affected silicon revision(s) not being used in this processor segment.

Table 8. Cross-Reference of Errata to Processor Segments

<table>
<thead>
<tr>
<th>AMD EPYC™ 7002 Series Processors</th>
<th>Processor Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1140</td>
<td>X</td>
</tr>
<tr>
<td>1150</td>
<td>X</td>
</tr>
<tr>
<td>1154</td>
<td>X</td>
</tr>
<tr>
<td>1155</td>
<td>X</td>
</tr>
<tr>
<td>1157</td>
<td>X</td>
</tr>
<tr>
<td>1159</td>
<td>X</td>
</tr>
<tr>
<td>1160</td>
<td>X</td>
</tr>
<tr>
<td>1163</td>
<td>X</td>
</tr>
<tr>
<td>1165</td>
<td>X</td>
</tr>
<tr>
<td>1166</td>
<td>X</td>
</tr>
<tr>
<td>1171</td>
<td>X</td>
</tr>
<tr>
<td>1183</td>
<td>X</td>
</tr>
<tr>
<td>1185</td>
<td>X</td>
</tr>
</tbody>
</table>
1140 Response Transaction May be Lost on Data Fabric

Description
Under a highly specific and detailed set of internal timing conditions, the CAKE (Data Fabric Coherent AMD socKet Extender) may lose a response transaction.

Potential Effect on System
System may hang or reset

Suggested Workaround
Program
• D18F3x2A4[28:25] to 4h, and
• D18F3x2A4[11:8] to 4h

System software may contain the workaround for this erratum.

Fix Planned
No fix planned
1150 PCIe® Incorrectly Updates Some AER (Advanced Error Reporting) Registers After Egress Blocking Error

Description
When a PCIe egress blocking error occurs, PCIe will incorrectly update the following AER registers:
- Header Log Register
- TLP Prefix Log Register
- Root Error Status register, Multiple ERR_FATAL/NONFATAL Received bit.

Potential Effect on System
After a PCIe egress blocking error, the system will not have access to accurate diagnostic information contained in the affected registers.

Suggested Workaround
None

Fix Planned
No fix planned
1154 MOV SS Instructions May Take Multiple Breakpoints

Description
Under a highly specific and detailed set of internal timing conditions, the MOV SS instruction may prematurely clear the RFLAGS RF bit if:

- RFLAGS TF bit is asserted, and
- the instruction hits a debug breakpoint, and
- an interrupt is taken by the affected instruction before it completes.

Potential Effect on System
The affected instruction may take multiple instruction breakpoints.

Suggested Workaround
None

Fix Planned
No fix planned
1155 DMA or Peer-to-peer Accesses Using Guest Physical Addresses (GPAs) May Cause IOMMU Target Abort

Description
In systems where:

- Virtualization is enabled, and
- IOMMU is in pass-through mode

DMA or peer-to-peer accesses using Guest Physical Addresses (GPAs) occurring within the regions defined below trigger a target abort.

- 0x00FD_0000_0000->0x00FD_F8FF_FFFF, or
- 0x00FD_F910_0000->0x00FD_F91F_FFFF, or
- 0x00FD_FB00_0000->0x00FD_FFFF_FFFF

Potential Effect on System
A DMA device will receive a target abort from the IOMMU.

Suggested Workaround
System software must mark the following block of memory as reserved:

- FD_0000_0000 -> FD_FFFF_FFFF

Fix Planned
No fix planned
1157 PCIe® Link Status May be Incorrect When Root Port Autonomousy Changes to Gen4 Speed

Description
When the PCIe® root port autonomously changes to Gen4 speed, the following will occur:

• Link Status Register (Offset 12h) [15] Link Autonomous Bandwidth Status will incorrectly not be asserted. If Link Status Control (Offset 10h) [15] Link Autonomous Bandwidth Interrupt Enable is asserted, an interrupt may fail to occur.
• Link Status Register (Offset 12h) [14] Link Bandwidth Management Status will be incorrectly asserted. If Link Status Control (Offset 10h) [14] Link Bandwidth Management Interrupt Enable is asserted, a spurious interrupt will occur.

Potential Effect on System
Software may incorrectly handle an autonomous change to PCIe Gen4 Speed.

Suggested Workaround
None

Fix Planned
No fix planned
1159 Writes to Base Frequency Register May be Ignored

Description
If the base frequency register, (MSRC001_0064[CpuDfsId], MSRC001_0064[CpuFid]):

- is programmed to a lower frequency than the default reset value, and
- the default base frequency is not a multiple of 100 MHz

then subsequent writes to the register that are greater than the next lower multiple of 100 MHz may be ignored.

Potential Effect on System
Software may report an incorrect value of base frequency.

Suggested Workaround
None

Fix Planned
No fix planned
1160 SdpParity and XiVictimQueue Mask Bits Incorrectly Mask Additional Errors

Description
If MCA::L3::MCA_CTL_MASK_L3[5] (SdpParity) is set then errors logged in MCA_STATUS_L3 that set MCA_STATUS_L3[ErrorCodeExt]=0x5 are correctly masked, and some system read data errors logged in MCA_STATUS_LS or MCA_STATUS_IF are masked incorrectly.

If MCA::L3::MCA_CTL_MASK_L3[6] (XiVictimQueue) is set then errors logged in MCA_STATUS_L3 that set MCA_STATUS_L3[ErrorCodeExt]=0x6 are correctly masked, and some system read data errors logged in MCA_STATUS_LS are masked incorrectly.

Potential Effect on System
Some system read data errors logged in MCA_STATUS_LS or MCA_STATUS_IF may fail to be detected.

Suggested Workaround
Do not program MCA::L3::MCA_CTL_MASK_L3[5] or MCA::L3::MCA_CTL_MASK_L3[6] to 1b.

Fix Planned
No fix planned
1163 Some MCA_MISC0 Bits May Fail to Persist Through Warm Reset

Description
The following warm-reset persistent bits may incorrectly be cleared during a warm reset:

- MCA_MISC0_DE[43:32], ErrCnt
- MCA_MISC0_DE[48], Ovrflw
- MCA_MISC0_DE[50:49], ThresholdIntType
- MCA_MISC0_EX[43:32], ErrCnt
- MCA_MISC0_EX[48], Ovrflw
- MCA_MISC0_EX[50:49], ThresholdIntType
- MCA_MISC0_IF[43:32], ErrCnt
- MCA_MISC0_IF[48], Ovrflw
- MCA_MISC0_IF[50:49], ThresholdIntType

Potential Effect on System
A corrected error count in some MCA banks will be lost over a warm reset.

Suggested Workaround
None

Fix Planned
No fix planned
1165 The PCIe® Link May Accumulate Correctable Errors in Some Gen3 Mode Configurations

Description

The PCIe® link may accumulate correctable receiver errors due to spurious entries into recovery or accumulate correctable errors due to NAKs (Negative Acknowledgements) in the following configurations:

- Gen3 mode, Link width x1
- Gen3 mode, Link width x4

A link that degrades to one of the affected modes from a different mode will accumulate correctable errors as if it was originally configured to operate in the affected mode.

Potential Effect on System

Unexpected NAKs may occur, and the processor root complex may report correctable errors.

Suggested Workaround

System software may contain the workaround for this erratum.

Fix Planned

No fix planned
1166 The PCIe® Link May Accumulate Correctable Errors in Gen4 Link Width x2 Mode

Description
The PCIe® link may accumulate correctable receiver errors due to spurious entries into recovery or accumulate correctable errors due to NAKs (Negative Acknowledgements) in Gen4 Link width x2 mode.

A link that degrades to the affected mode from a different mode will accumulate correctable errors as if it was originally configured to operate in the affected mode.

Potential Effect on System
Unexpected NAKs may occur, and the processor root complex may report correctable errors.

Suggested Workaround
None

Fix Planned
No fix planned
1171 Requester ID May Be Set Incorrectly on Outbound PCIe® VDMs (Vendor Defined Messages)

Description
The Requester ID may be set incorrectly on Outbound PCIe® VDMs (Vendor Defined Messages) if the Type field indicates:

- Broadcast from the Root Complex,
- Routed to the Root Complex, or
- Routed by ID.

VDMs will be transmitted correctly within PCIe devices attached to the following groups of processor pins, but not between the groups:

- Group 0: P0_*, G0_*, WAFL_*
- Group 1: P1_*, G1_*
- Group 2: P2_*, G2_*
- Group 3: P3_*, G3_*

MCTP (Management Component Transport Protocol) is the only defined and validated usage of PCIe VDMs on AMD platforms.

Potential Effect on System
System may be unable to route responses of VDM protocols. The receiving device may be unable to determine the source of the request.

Suggested Workaround
None

Fix Planned
No fix planned
1183 The Processor May Hang If it Receives INIT# While Already In the INIT# State

Description
The processor may hang if it receives INIT# while already in the INIT# state.

Potential Effect on System
System may hang or reset.

Suggested Workaround
Do not send an INIT# to the processor when the processor is already in the INIT# state.

Fix Planned
No fix planned
1185 PCIe® Receive Buffer Location May Be Incorrectly Overwritten

Description
Under a highly specific and detailed set of internal timing conditions, a PCIe® receive buffer SRAM location in the host controller may be incorrectly overwritten.

Potential Effect on System
None with BIOS incorporating AGESA RomePI-SP3_1.0.0.3 or later.
Running software prior to AGESA RomePI-SP3_1.0.0.3 may result in unpredictable system behavior and possible logging of uncorrectable parity error(s) in MCA_STATUS_NBIO due to incorrect data in PCIe buffer.

Suggested Workaround
BIOS incorporating AGESA RomePI-SP3_1.0.0.3 or later contains a workaround for this erratum.

Fix Planned
No fix planned
Documentation Support

The following documents provide additional information regarding the operation of the processor:

- **AMD64 Architecture Programmer's Manual Volume 1: Application Programming**, order# 24592
- **AMD64 Architecture Programmer's Manual Volume 2: System Programming**, order# 24593
- **AMD64 Architecture Programmer's Manual Volume 3: General-Purpose and System Instructions**, order# 24594
- **AMD64 Architecture Programmer's Manual Volume 4: 128-Bit and 256-Bit Media Instructions**, order# 26568
- **AMD64 Architecture Programmer's Manual Volume 5: 64-Bit Media and x87 Floating-Point Instructions**, order# 26569
- **AMD I/O Virtualization Technology (IOMMU) Specification**, order# 48882
- **Processor Programming Reference (PPR) for AMD Family 17h Models 30h-3Fh Processors (NDA)**, order# 55803

See the AMD Web site at www.amd.com for the latest updates to documents.