
Preliminary Information — Subject to Change

Advanced Synchronization
Facility

Proposed Architectural
Specification

Publication # 45432 Revision: 2.1
Issue Date: March 2009

Advanced Micro Devices

© 2009 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or
warranties with respect to the accuracy or completeness of the contents of this
publication and reserves the right to make changes to specifications and
product descriptions at any time without notice. The information contained
herein may be of a preliminary or advance nature and is subject to change
without notice. No license, whether express, implied, arising by estoppel, or
otherwise, to any intellectual property rights are granted by this publication.
Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD
assumes no liability whatsoever, and disclaims any express or implied
warranty, relating to its products including, but not limited to, the implied
warranty of merchantability, fitness for a particular purpose, or infringement of
any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other
applications intended to support or sustain life, or in any other application in
which the failure of AMD’s product could create a situation where personal
injury, death, or severe property or environmental damage may occur. AMD
reserves the right to discontinue or make changes to its products at any time
without notice.

Trademarks

AMD, the AMD Arrow logo, and combinations thereof, are trademarks of Advanced Micro Devices, Inc.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

Contents

Revision History...6

Chapter 1 Introduction..7

1.1 Overview..7

1.1.1 ASF guarantees..8

1.1.2 ASF limitations..8

1.2 Speculative region structure...8

1.3 Unprotected memory..10

1.4 Speculative region aborts...10

1.5 Nested speculative regions...11

1.6 Capacity..11

Chapter 2 Terminology..13

Chapter 3 CPUID identification..16

3.1 Detecting ASF presence and capabilities...16

3.2 Detecting the cache-line size..16

Chapter 4 Model-specific registers...18

4.1 ASF configuration MSR..18

4.2 ASF exception IP MSR..18

4.3 Debug-control MSR...19

Chapter 5 Instructions...20

5.1 SPECULATE...20

5.1.1 Instruction...20

5.1.2 Description...20

5.1.3 Operation..21

5.1.4 Flags affected...21

5.2 LOCK MOVx (load), PREFETCH, and PREFETCHW...21

5.2.1 Instruction...21

5.2.2 Description...22

5.2.3 Operation..23

5.2.4 Flags affected...23

3

Preliminary Information — Subject to Change

ASF Proposed Specification 45432 Rev.   2.1 March 2009

5.3 LOCK MOVx (store)...24

5.3.1 Instruction...24

5.3.2 Description...24

5.3.3 Operation..25

5.3.4 Flags affected...25

5.4 COMMIT...25

5.4.1 Instruction...25

5.4.2 Description...25

5.4.3 Operation..26

5.4.4 Flags affected...26

5.5 ABORT..26

5.5.1 Instruction...26

5.5.2 Description...26

5.5.3 Operation..27

5.5.4 Flags affected...27

5.6 RELEASE..27

5.6.1 Instruction...27

5.6.2 Description...27

5.6.3 Operation..28

5.6.4 Flags affected...28

Chapter 6 Operation in ASF speculative regions..29

6.1 Aborts...29

6.1.1 Description...29

6.1.2 Operation..30

6.2 Contention..31

6.2.1 Description...31

6.2.2 Operation..32

6.3 Disallowed instructions..32

6.4 Far control transfers...32

6.4.1 Description...32

6.4.2 Operation..34

6.5 Memory access ordering..35

4

Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

6.6 Updating Accessed and Dirty bits in page-table entries..36

Chapter 7 ASF usage models...37

7.1 Lock-free synchronization primitives..37

7.1.1 Double-word compare and swap..37

7.1.2 Load locked, store conditional...38

7.2 Lock-free data structures..39

7.2.1 LIFO list manipulation...39

7.2.2 FIFO queue...41

7.2.3 Speculative region composition...42

7.3 Coexistence with lock-based critical sections..42

5

Preliminary Information — Subject to Change

ASF Proposed Specification 45432 Rev.   2.1 March 2009

Revision History

Date Revision Description

March 2009 2.1 Minor typographic and language corrections

August 2008 2.0 Initial public release

6

Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

Chapter 1 Introduction

The Advanced Synchronization Facility (ASF) is an AMD64 extension to allow user- and system-
level code to modify a set of memory objects atomically without requiring expensive traditional
synchronization mechanisms.

The ASF extension provides an inexpensive primitive from which higher-level synchronization
mechanisms can be synthesized: for example, multi-word compare-and-exchange, load-locked-
store-conditional, lock-free data structures, lock-based data structures that do not suffer from
priority inversion, and primitives for software-transactional memory.

ASF is both more flexible and less expensive than existing atomic memory modification
primitives. Instead of offering new instructions with hardwired semantics (such as compare-and-
exchange for two independent memory locations), ASF only exposes a mechanism for atomically
updating multiple independent memory locations and allows software to implement the intended
synchronization semantics.

1.1 Overview

ASF works by allowing software to declare speculative regions that specify and modify a set of
protected memory locations. Modifications made to protected memory become visible to other
CPUs either all at once (when the speculative region finishes successfully) or never (if the
speculative region is aborted).

Unlike traditional critical sections, ASF speculative regions do not require mutual exclusion.
Multiple ASF speculative regions that may access the same memory locations can be active at the
same time on different processors, allowing greater parallelism. When ASF detects conflicting
accesses to protected memory, it aborts the speculative region and notifies software, which can
retry the operation as desired.

ASF protects memory at cache-line granularity. Despite cache-line size being an implementation
detail, software does not have to be concerned with cache lines and can instead work on the level
of memory objects, as long as all of the following constraints are met, which are supported by all
ASF-capable CPU implementations:

• ASF-protected memory objects have a size of up to 64 bytes and are naturally aligned. (All
ASF-capable implementations have a cache-line size of at least 64 bytes.)

• The speculative region does not reference more than four objects (the architecturally
guaranteed minimum; more may be supported on a model-specific basis).

• Memory objects protected using ASF do not share cache lines with memory objects that
should not be so protected. (False sharing may lead to unwanted protection, exceptions,
and unnecessary aborts.)

Chapter 1 Introduction 7

Preliminary Information — Subject to Change

ASF Proposed Specification 45432 Rev.   2.1 March 2009

1.1.1 ASF guarantees

In more detail, ASF guarantees forward progress for speculative regions, provided the following
conditions hold:

• The speculative region does not exceed ASF's guaranteed capacity: up to four cacheable
memory regions with a size and alignment of 64 bytes. (See Section 1.6 for details.)

• No interrupt or exception is delivered while executing the speculative region.
• There are no conflicting memory accesses from other CPUs.

If one of these conditions does not hold, the speculative region will be aborted (explained in more
detail in Section 1.4).

1.1.2 ASF limitations

ASF has the following limitations:

• ASF supports only a limited form of nested speculative regions. (Refer to Section 1.5 for
details.)

• ASF only operates on cacheable data and has a weakened memory-access-ordering model
in certain respects. Memory ordering can be controlled as necessary via existing fence
instructions. (Refer to Section 6.5 for details.)

1.2 Speculative region structure

ASF introduces a set of new instructions for denoting the beginning and end of a speculative
region and for protecting memory objects. Additionally, ASF speculative regions first need to
specify which memory objects should be protected using special declarator instructions.

Once a set of memory objects is protected, a speculative region can modify these memory objects
speculatively. If a speculative region completes successfully, all such modifications become
visible to all CPUs simultaneously and atomically. Otherwise, the modifications are discarded.

An ASF speculative region has the following structure:

1. The speculative region is entered with the SPECULATE instruction.
2. SPECULATE always writes an ASF status code of zero in rAX and sets the rFLAGS

register accordingly. This status code distinguishes between the initial entry into a
speculative region and an abort situation. SPECULATE also remembers the address of the
instruction following the SPECULATE instruction as the landmark to which control is
transferred on an abort.

3. SPECULATE is followed by instructions that check the status code and jump to an error
handler if it is not zero (typically JNZ).

4. Declarator instructions (memory-load forms of LOCK MOVx, LOCK PREFETCH, and
LOCK PREFETCHW instructions) are used to specify locations for atomic access –
memory that ASF should protect. The MOV forms also perform the specified register load.

5. The speculative region (standard x86 instructions) is executed.

8 Introduction Chapter 1

Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

6. Once a memory location has been protected using a declarator, it can be read using regular
x86 instructions. However, to modify protected memory locations, the speculative region
uses memory-store forms of LOCK MOVx instructions. (It is an error to use regular
memory-updating instructions for protected memory locations. Doing so results in a #GP
exception.)

7. The COMMIT instruction denotes the end of the speculative region and causes the
modifications to the protected lines to become visible to the rest of the system.

8. An ABORT instruction is available to programmatically terminate the speculative region
with abort rather than commit semantics.

Note that the two declarators LOCK PREFETCH and LOCK PREFETCHW differ from non-
LOCK-prefixed prefetches in that they need to check the specified memory address for translation
faults and memory-access permission and generate a page fault if unsuccessful. This behavior is
necessary because ASF needs to establish a valid translation before it starts monitoring the
protected memory location.

Example

The following example code implements compare-and-exchange on two independent memory
locations using ASF (dubbed “DCAS” for “double compare-and-swap”). (This code uses
immediate retry as the recovery strategy. A real implementation might have a more elaborate
recovery strategy, for example, exponential backoff.)

; DCAS Operation:
; IF ((mem1 = RAX) && (mem2 = RBX))
; {
; mem1 = RDI
; mem2 = RSI
; RCX = 0
; }
; ELSE
; {
; RAX = mem1
; RBX = mem2
; RCX = 1
; }
; (R8, R9 modified)
;
DCAS:

MOV R8, RAX
MOV R9, RBX

retry:
SPECULATE ; Speculative region begins
JNZ retry ; Page fault, interrupt, or contention
MOV RCX, 1 ; Default result, overwritten on success
LOCK MOV RAX, [mem1] ; Specification begins
LOCK MOV RBX, [mem2]
CMP R8, RAX ; DCAS semantics
JNZ out
CMP R9, RBX
JNZ out

Chapter 1 Introduction 9

Preliminary Information — Subject to Change

ASF Proposed Specification 45432 Rev.   2.1 March 2009

LOCK MOV [mem1], RDI ; Update protected memory
LOCK MOV [mem2], RSI
XOR RCX, RCX ; Success indication

out:
COMMIT ; End of speculative region

1.3 Unprotected memory

ASF only protects memory lines that have been specified using declarator instructions. All other
memory remains unprotected and can be modified inside a speculative region using standard x86
instructions. These modifications retain their standard behavior, that is, they become visible to
other CPUs immediately and in program order.

1.4 Speculative region aborts

Speculative regions can be aborted at any point because of contention, far control transfers
(including those caused by interrupts and faults), or software aborts.

Speculative-region aborts discard modifications to the contents of the protected lines, causing
them to be unobservable by other CPUs. However, ASF does not roll back modifications to
unprotected memory. Software must be written to accommodate these modifications. In many
cases this will simply be a matter of reentering the initialization sequence leading up to the
speculative region.

Aborts do not roll back register state (except for the instruction and stack pointers, as described
later in this section). Software must be written to handle or ignore modified register contents in
case of an abort, or it must avoid modifying them in the speculative regions.

Before an interrupt or exception handler returns, operating-system code or other processes may
have executed in the interim. This is of no consequence for the interrupted software as no ASF-
related state is maintained across context switches. Other processes may even have executed ASF
speculative regions that inspected or modified any of the locations targeted by the interrupted
speculative region. The interrupted software will have its speculative region aborted and simply
needs to re-inspect the state of the shared data structure as it attempts its speculative region again.

ASF is unusual in that SPECULATE has rollback semantics (much like C's setjmp interface):
Speculative-region aborts reset the instruction and stack pointers to the values they had after
SPECULATE was first executed. The rAX register is also written with a nonzero status code that
provides details of the abort condition, and rFLAGS is set accordingly. The subsequent
instructions can inspect the status code or rFLAGS register and direct the control flow (via a
conditional jump) to the error handler.

10 Introduction Chapter 1

Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

1.5 Nested speculative regions

ASF supports composing a speculative region out of pseudo-nested speculative regions by
flattening a hierarchy of SPECULATE-COMMIT pairs into just one speculative region. All
pseudo-nested speculative regions share ASF's resources; nested COMMIT instructions do not
release any protected lines. For nesting to work, all memory that is protected in the outermost
SPECULATE-COMMIT pair plus all nested SPECULATE-COMMIT pairs must fit within ASF's
limits for protected lines.

Because of the flattening, memory locations protected in a nested speculative region remain
protected in outer speculative regions. Therefore, outer speculative regions need to use LOCK
MOV for updating memory locations protected by an inner speculative region. (Use of regular
memory-update instructions for protected lines results in a #GP exception.)

To detect nesting, ASF maintains an internal nesting count that is incremented by SPECULATE
and decremented by COMMIT. A nested SPECULATE does not define a new checkpoint for
rollback. Instead, aborts always roll back to the first SPECULATE that started the speculative
region.

1.6 Capacity

A given ASF implementation will have certain capacity constraints caused by hardware
limitations, such as the number of locations that can be simultaneously monitored for contention,
or the number of stores that can be handled speculatively. There are two aspects to this: a
minimum guaranteed capacity, and a larger reference-pattern dependent capacity.

A speculative region is guaranteed to complete, in the absence of disturbances such as faults,
interrupts, or contention, as long as the number of protected locations does not exceed the
minimum guaranteed capacity, regardless of where in the cacheable address space those locations
are. An implementation may also provide a capacity beyond the minimum that can vary depending
on which locations are referenced.

For example, an implementation may require that all protected locations simultaneously reside in
the data cache for the duration of the speculative region, and if a protected line is displaced from
the cache because of replacement, the speculative region is aborted. Hence, a speculative region
that happened to reference N+1 locations that all mapped to the same index in an N-way
associative data cache would never be able to complete. In this case, the minimum guaranteed
capacity would be determined by the cache’s associativity.

For more random reference patterns, a speculative region could however reference many locations
before the associativity at any one cache index is exceeded and a protected line is displaced, and
hence could often operate successfully on a much larger data set than the guaranteed minimum.
However, there would be no guarantee for any given set of references that it would not hit a
hardware limitation. In such a scenario, software must provide an alternate means for completing
the intended operation in case the ASF hardware cannot handle it – for example employing a
global lock (see Section -Lock for a specific example). ASF provides an indication to software of
when such a limitation has been hit, distinguishing it from transient conditions which might not be
encountered on a retry. (Refer to Section 6.1 for details.)

Chapter 1 Introduction 11

Preliminary Information — Subject to Change

ASF Proposed Specification 45432 Rev.   2.1 March 2009

Implementations may use monitoring and store buffering mechanisms which are not tied to cache
associativity. In any event, all ASF implementations architecturally guarantee a minimum capacity
of four cache lines. The actual minimum of a given implementation (which may be higher) is
reported by CPUID.

For some use cases, the odds that a speculative region with a larger number of reads will succeed
can be increased through the use of RELEASE instructions, which remove designated cache lines
from the monitored set, lowering the chances of hitting a hardware capacity limit. This could be
applicable in such cases as walking a long linked list, where each successive element can be
dropped once it has been traversed without being modified.

12 Introduction Chapter 1

Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

Chapter 2 Terminology

(Terms set in italics are defined in a separate glossary entry.)

ABORT

Instruction that voluntarily aborts a speculative region. See also Abort and Section 5.5.

Abort

A condition that causes a speculative region to fail. Different abort conditions are
distinguished by an abort status code written to rAX when the abort is signaled. In case of an
abort, the contents of protected lines and the instruction and stack pointers are rolled back to
the values they had when SPECULATE was executed. Aborts in nested speculative regions
roll back to the SPECULATE instruction that started the outermost speculative region.

ASF configuration MSR

A model-specific register (MSR) configuring ASF.

Cache line

Aside from their use to reduce memory-access latencies, ASF uses the cache-coherency
protocol for detecting contention. Therefore, the granularity for ASF memory protection is
the size of a cache line.

See also memory line.

COMMIT

Instruction that denotes the end of a speculative region. See Section 5.4.

Contention

Conflicting memory accesses that usually cause a speculative region to abort. See Section
6.2.

CPU

In this specification, the term “CPU” refers to one logical CPU (one hardware thread
executing x86 instructions), irrespective of how these logical CPUs are packaged. (Its use is
synonymous to terms like “CPU core” and “x86 thread,” which are not used in this
specification.)

Declarator

Chapter 2 Terminology 13

Preliminary Information — Subject to Change

ASF Proposed Specification 45432 Rev.   2.1 March 2009

Instruction that declares a location for atomic access (protected lines) during a speculative
region: LOCK MOVx (load), LOCK PREFETCH, and LOCK PREFETCHW. See Section
5.2.

Far control transfer

A (voluntary or involuntary) control-flow diversion to another privilege level or another
code segment. Far control transfers include far-call, far-jump, far-ret, and interrupts. See
Section 6.4.

Imprecise exception

Exceptions occurring in a speculative region cause an abort, rolling back execution flow to
the instruction following SPECULATE before the exception handler is called. Consequently,
the instruction and stack pointers reported to the exception handler do not correspond to the
fault site, making the exception imprecise. See Section 6.4.1.1.

Memory line

A region of physical memory that has the same size and alignment as a cache line.

Protected line

A memory line that is protected during a speculative region. ASF maintains atomicity of
updates to all protected lines as long as no other CPU contends for it (see contention).
Otherwise, the speculative region is aborted.

RELEASE

Instruction that allows ASF to release one protected line before the end of a speculative
region. Protected lines that have been modified cannot be released.

SPECULATE

Instruction that starts an ASF speculative region. In case the speculative region is aborted,
the instruction and stack pointer are rolled back to the post-SPECULATE instruction values,
and modifications to protected lines are discarded.

Speculative region

An ASF speculative region starts with the execution of the SPECULATE instruction and
ends either when the COMMIT instruction is executed or when the speculative region is
aborted.

Transactional store

Instructions that write to protected lines, in particular, memory-store variants of LOCK
MOVx. No other instructions are allowed to write to protected lines. See Section 5.3.

14 Terminology Chapter 2

Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

Chapter 2 Terminology 15

Preliminary Information — Subject to Change

ASF Proposed Specification 45432 Rev.   2.1 March 2009

Chapter 3 CPUID identification

To determine whether ASF is present and which capabilities it has, use the CPUID instruction.

3.1 Detecting ASF presence and capabilities

CPUID <= EAX = TBD

Return: ASF capabilities, according to the following table:

Register Bits Meaning

EDX 31:1 Reserved.

EDX 0 ASF: Set to 1 if the CPU supports ASF.

EBX 31:16 Reserved.

EBX 15:0 ASFCapacity: ASF capacity. The minimum number of different protected lines in an
ASF speculative region that this implementation supports. If ASF is present, this value is
always greater than or equal to 4.

Note that an ASF implementation might support more than the number of protected lines
reported by ASFCapacity under certain conditions; see Section 1.6.

3.2 Detecting the cache-line size

CPUID <= EAX = 0000_0001h

Return: Various information (refer to the CPUID specification for details). Includes:

Register Bits Meaning

EBX 15:8 CLFlush: Cache-line size. Specifies the size of a cache line in quadwords. (A quadword
has a size of eight bytes.) AMD64 implementations supporting ASF always have a cache-
line size of at least 8 quadwords (64 bytes).

16 CPUID identification Chapter 3

Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

Chapter 3 CPUID identification 17

Preliminary Information — Subject to Change

ASF Proposed Specification 45432 Rev.   2.1 March 2009

Chapter 4 Model-specific registers

4.1 ASF configuration MSR

MSR TBD – ASF_CFG

ASF configuration MSR

This MSR defines ASF's current operating mode.

Bits Meaning

63:1 Reserved – MBZ

0 ASFFault: Fault when ASF capacity is exceeded. When this bit it set to 1, declarators generate a
#GP(0) fault when software attempts to protect more lines than supported by ASF. Otherwise, the
#GP is suppressed. Instead, the speculative region is aborted and the abort status code is set to
ASF_CAPACITY.

This MSR is read–write. Its reset value is 0.

4.2 ASF exception IP MSR

MSR TBD – ASF_EXCEPTION_IP

ASF exception IP MSR

In the case of an exception in a speculative region that causes an abort, ASF saves the rIP of the
original fault or trap site in this MSR before aborting the speculative region. (This rIP value is the
one that would have been put in the exception frame if the rollback had not happened.) The rIP
actually reported in the exception frame is the address of the instruction following the initial
SPECULATE instruction due to the rollback.

A bit on the exception handler's stack frame indicates whether the ASF_EXCEPTION_IP MSR
contains a valid value. Refer to Section 6.4.1.1 for details.

Bits Meaning

63:0 ExceptionIP: rIP at which an exception or fault occurred before the speculative region was aborted.

18 Model-specific registers Chapter 4

Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

This MSR is read-only.

4.3 Debug-control MSR

MSR 0000_01D9 – DebugCtlMSR

The following bit is added to this MSR:

Bits Meaning

TBD DebugAbort: If set to 1, #DB debug traps abort speculative regions. Otherwise, ASF speculative
regions act as an interrupt shadow for debug traps: #DB traps in ASF speculative regions are
deferred until after the speculative region has ended. Read-write. Defaults to 0.

Chapter 4 Model-specific registers 19

Preliminary Information — Subject to Change

ASF Proposed Specification 45432 Rev.   2.1 March 2009

Chapter 5 Instructions

This section describes the instructions added to the AMD64 architecture to support ASF. All of
these instructions raise #UD if ASF is not implemented or if bit 0 of the ASF_CFG MSR is 0.

5.1 SPECULATE

5.1.1 Instruction

Mnemonic

SPECULATE

Opcode

TBD

5.1.2 Description

SPECULATE starts an ASF speculative region.

The exact operation of SPECULATE differs depending on whether it is the initial SPECULATE
of a top-level speculative region or a nested SPECULATE.

The initial instance of SPECULATE records the (partial) checkpoint to which execution returns if
the speculative region is aborted. The checkpoint consists of the values the instruction and stack
pointers will have after SPECULATE has completed execution (hence on an abort, control
transfers to whatever instruction follows SPECULATE). SPECULATE also clears the rAX
register, sets rFLAGS accordingly, and sets the nesting level (an internal processor state variable)
to 1.

If an instance of SPECULATE is encountered within an ASF speculative region, it does not
checkpoint the instruction and stack pointers but it does clear rAX and set rFLAGS. It also
increments the nesting level. An ASF abort will transfer control to the checkpoint recorded by the
initial instance of SPECULATE.

The maximum nesting level is 256. If this level is exceeded, SPECULATE raises #GP(0).

20 Instructions Chapter 5

Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

5.1.3 Operation

IF (NEST_LEVEL = 256)
{
 EXCEPTION [#GP(0)]
}
rAX = 0
NEST_LEVEL += 1
IF (NEST_LEVEL = 1)
{
 SAVED_rSP = rSP
 SAVED_rIP = rIP of next instruction
}

5.1.4 Flags affected

SF, ZF, AF, PF, CF set according to result in rAX. OF is set to 0.

5.2 LOCK MOVx (load), PREFETCH, and
PREFETCHW

5.2.1 Instruction

Mnemonic

LOCK MOV reg,mem

Opcodes

F0 8A/r, F0 8B/r, F0 A0, F0 A1

Mnemonic

LOCK MOV{D,DQA,DQU,Q} xmm,mem

Opcodes

F0 66 0F 6E/r, F0 66 0F 6F/r, F0 F3 0F 6F/r, F0 F3 0F 7E/r

Mnemonic

LOCK PREFETCH mem

Opcode

Chapter 5 Instructions 21

Preliminary Information — Subject to Change

ASF Proposed Specification 45432 Rev.   2.1 March 2009

F0 0F 0D/0

Mnemonic

LOCK PREFETCHW mem

Opcode

F0 0F 0D/1

5.2.2 Description

These memory-reference instructions, called declarators, are used to specify locations for which
atomic access is desired.

Declarators work like their counterparts without the LOCK prefix, with the following additional
operation:

Each declarator adds the memory line containing the first byte of the referenced memory object to
the set of protected lines. Software must ensure that unaligned memory accesses do not span both
protected and unprotected lines; otherwise, the atomicity of data accesses to these memory objects
is not guaranteed.

Unlike prefetches without a LOCK prefix, LOCK PREFETCH and LOCK PREFETCHW also
check the specified memory address for translation faults and memory-access permission (read or
write, respectively) and, if unsuccessful, generate a page-fault or general-protection exception as
appropriate. Also, LOCK PREFETCH and LOCK PREFETCHW generate a #DB exception when
they reference a memory address for which a data breakpoint has been configured.

A declarator referencing a line that has already been protected is permitted and behaves like a
regular memory reference. It does not change the protected status of the line.

Once a memory line has been protected using a declarator, it can be modified speculatively (but
cannot be modified nonspeculatively) within the speculative region. See Section 5.3 for
instructions that can update protected lines, and Section 6.5 for memory access ordering rules.

If the number of declarators issued in the current speculative region exceeds ASF's maximum
supported capacity, the behavior depends on the setting of MSR ASF_CFG[ASFFault]. If that bit
is set to 1, a #GP(0) is generated. Otherwise, the #GP is suppressed. Instead, the speculative region
is aborted and the abort status code is set to ASF_CAPACITY.

Declarators are not allowed outside of speculative regions and result in #UD in this case.

LOCK MOVx from memory with a caching type other than WB (writeback) is not supported by
ASF and results in #GP(0).

LOCK MOVD into MMX registers is not supported and results in #UD.

(#GP and #UD, like all interrupts, also abort the speculative region. See Section 6.4.)

22 Instructions Chapter 5

Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

5.2.3 Operation

IF (CPU not in speculative region)
{
 EXCEPTION [#UD]
}
IF (instruction = LOCK PREFETCHW)
{
 translate memory address and check for write permission
 // Generates #GP or #PF if necessary
}
ELSE
{
 translate memory address and check for read permission
 // Generates #GP or #PF if necessary
}
IF (line already protected)
{
 perform conventional memory reference operation
 EXIT
}
IF (address refers to non-WB memory type)
{
 EXCEPTION [#GP(0)]
}
IF (ASF capacity overflow)
{
 IF (ASF_CFG[ASFFault])
 {
 EXCEPTION [#GP(0)]
 }
 ELSE
 {
 abort speculative region (ASF_CAPACITY, 1, 0) // See Section 6.1
 EXIT
 }
}
execute memory reference and handle contention // See Section 6.2
add line to set of protected lines

5.2.4 Flags affected

None.

Chapter 5 Instructions 23

Preliminary Information — Subject to Change

ASF Proposed Specification 45432 Rev.   2.1 March 2009

5.3 LOCK MOVx (store)

5.3.1 Instruction

Mnemonic

LOCK MOV mem,reg/imm

Opcodes

F0 88/r, F0 89/r, F0 A2, F0 A3, F0 C6/0i, F0 C7/0i

Mnemonic

LOCK MOV{D,DQA,DQU,Q} mem,xmm

Opcodes

F0 66 0F 7E/r, F0 66 0F 7F/r, F0 F3 0F 7F/r, F0 66 0F D6/r

5.3.2 Description

These memory-store instructions are used to store data into protected lines. The lines must already
have been protected by a declarator instruction (see Section 5.2); if not, these store instructions
result in #GP(0).

Updates to protected lines do not become visible to other CPUs until the COMMIT instruction is
executed. If the speculative region is aborted, these updates will be discarded and cannot be
observed from other CPUs.

There are no other instructions to store data into protected lines. Attempting to modify protected
lines using regular move instructions or other memory-updating instructions results in #GP(0).

LOCK MOVx store instructions are not allowed outside of speculative regions and result in #UD
in this case.

Software must ensure that unaligned memory accesses resulting from LOCK MOVx store
instructions do not span both protected and unprotected lines; otherwise, #GP(0) is generated.

LOCK MOVD from MMX registers is not supported and results in #UD.

(#GP and #UD, like all interrupts, also abort the speculative region. See Section 6.4.)

5.3.3 Operation

IF (CPU not in speculative region)

24 Instructions Chapter 5

Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

{
 EXCEPTION [#UD]
}
translate memory address and check for write permission
 // Generates #PF if necessary
IF (access spanning protected and unprotected line
 || ! line already protected)
{
 EXCEPTION [#GP(0)]
}
execute memory reference and handle contention // See Section 6.2

5.3.4 Flags affected

None.

5.4 COMMIT

5.4.1 Instruction

Mnemonic

COMMIT

Opcode

TBD

5.4.2 Description

Denotes end of an ASF speculative region.

When the COMMIT belongs to a pseudo-nested speculative region (a nested SPECULATE-
COMMIT pair), COMMIT decrements the nesting count and exits without releasing any protected
lines.

When COMMIT ends a speculative region (nest count is equal to 1), this instruction releases all
protected lines. Modified protected lines will be committed and made visible to other CPUs.

COMMIT sets the rAX register to zero and sets rFLAGS according to the value in rAX. (Future
enhancements to ASF may result in COMMIT setting rAX to a value other than zero.)

Chapter 5 Instructions 25

Preliminary Information — Subject to Change

ASF Proposed Specification 45432 Rev.   2.1 March 2009

When encountered outside of a speculative region, the COMMIT instruction raises #GP(0).

5.4.3 Operation

IF (CPU not in speculative region) // NEST_LEVEL = 0
{
 EXCEPTION [#GP(0)]
}
rAX = 0
NEST_LEVEL -= 1
IF (NEST_LEVEL = 0)
{
 commit protected lines
 release protected lines
 end speculative region
}

5.4.4 Flags affected

SF, ZF, AF, PF, CF set according to result in rAX. OF is set to 0.

5.5 ABORT

5.5.1 Instruction

Mnemonic

ABORT

Opcode

TBD

5.5.2 Description

Aborts an ASF speculative region.

26 Instructions Chapter 5

Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

In a speculative region, ABORT discards modifications to previously protected lines and releases
all protected lines. The contents of the AX register are copied into the SoftwareAbort field of the
abort code in rAX. The abort status-code field will be set to ASF_ABORT.

Refer to Section 6.1 for a further description of abort behavior.

When encountered outside an ASF speculative region, the ABORT instruction generates #GP(0).

5.5.3 Operation

IF (CPU not in speculative region)
{
 EXCEPTION [#GP(0)]
}
abort speculative region (ASF_ABORT, 0, AX) // See Section 6.1

5.5.4 Flags affected

None.

5.6 RELEASE

5.6.1 Instruction

Mnemonic

RELEASE mem

Opcode

TBD

5.6.2 Description

The RELEASE instruction is a hint that allows ASF to remove an unmodified protected line
(referenced by the specified memory address) from a speculative region's set of protected lines.

RELEASE can be used to circumvent ASF's capacity limitations when traversing potentially long
chains of pointers. However, as the instruction does not guarantee that the specified protected line

Chapter 5 Instructions 27

Preliminary Information — Subject to Change

ASF Proposed Specification 45432 Rev.   2.1 March 2009

will actually be released, software must be designed to fall back to a different code path when the
capacity limit is reached.

RELEASE never releases protected lines that have been modified within the speculative region.
The circumstances under which RELEASE releases unmodified protected lines are
implementation specific.

If RELEASE does release a protected line, then another CPU accessing data contained in that
memory line will no longer cause ASF contention. Otherwise, ASF continues to monitor the
protected line for contention.

RELEASE does not consider the number of declarators that were used to protect the memory line.
In other words, a protected line might be released even if it was specified using more than one
declarator.

When attempting to release a line that is not in the current set of protected lines, the instruction is a
no-op.

When encountered outside an ASF speculative region, the instruction generates #GP(0).

5.6.3 Operation

IF (CPU not in speculative region)
{
 EXCEPTION [#GP(0)]
}
IF (referenced line not in set of protected lines)
{
 EXIT
}
IF (referenced line has not been modified in speculative region)
{
 IF (implementation-specific conditions)
 {
 release referenced line
 }
}

5.6.4 Flags affected

None.

28 Instructions Chapter 5

Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

Chapter 6 Operation in ASF speculative
regions

6.1 Aborts

6.1.1 Description

ASF automatically aborts a speculative region when one of the following conditions occurs:

• Contention for memory that is included in the set of protected lines (see Section 6.2)
• A condition that results in a far control transfer (see Section 6.4)
• Explicit abort (by executing ABORT)
• Other implementation-specific conditions

Aborts discard any modifications to currently locked cache lines and release all protected cache
lines. Conditions that cause an abort also set the abort status code to a nonzero value. This code is
passed to software in the rAX register, and rFLAGS is set accordingly, when the abort is signaled.

ASF signals aborts by rolling back rSP and rIP to the instruction following the SPECULATE
instruction that initiated the speculative region. The conditional jump following SPECULATE can
then jump to a recovery routine.

The other registers (general-purpose registers, floating-point registers, XMM registers) are not
restored during a roll back. The only way software can rely on the contents of a register after a roll
back is by not modifying it in the speculative region. Otherwise, software must be written to
ignore, in the case of an abort, the contents of any registers the speculative region might have
modified.

When an abort is signaled, the rAX register is always nonzero and has the following layout:

Bits Meaning

63:32 (In 64-bit mode:) Set to zero

31:16 SoftwareAbort: 16-bit value passed to the ABORT instruction. Zero if no ABORT instruction was
encountered.

15:8 NestLevel: Nesting level in which the abort occurred (equivalent to ASF's nesting count minus 1).
Zero if the aborted speculative region has not been nested.

7 HardError: If set to 0, the speculative region has been aborted because of a transient error (such as
contention) and can be retried. If set to 1, a hard error (such as a capacity overrun) has been
detected, requiring a different recovery method.

Chapter 6 Operation in ASF speculative regions 29

Preliminary Information — Subject to Change

ASF Proposed Specification 45432 Rev.   2.1 March 2009

6:0 StatusCode: The reason for the abort. See following table.

The StatusCode and HardError fields have the following meaning:

Status code
Hard
error

Meaning

0 0 Success (no abort)

ASF_CONTENTION 0 Speculative region was aborted because of contention.

ASF_ABORT 0 Speculative region aborted using ABORT instruction.

ASF_FAR 0 Speculative region aborted by an exception or an interrupt.

ASF_DISALLOWED_
OP

1 Speculative region aborted because of a disallowed instruction. (This
status code indicates a programming error.)

ASF_CAPACITY 1 ASF capacity exceeded. The number of declarators exceeded the
hardware's capacity for handling them atomically.

Other value 0 Spurious error

Other value 1 Hard error

“ASF_CONTENTION”, “ASF_ABORT”, and so on, are symbolic constants that will be defined in
a later revision of this document.

Note that it is possible for interrupt handlers to modify the abort status code in rAX when they
detect that an ASF speculative region has been aborted (through the Imprecise bit in the rFLAGS
image on the stack or in the VMCB; see Section 6.4.1.1). For example, interrupt handlers can
convey additional information in the SoftwareAbort field according to a software convention, and
exception handlers can set the HardError flag if necessary.

6.1.2 Operation

abort speculative region (status_code, hard_error, software_code):
STATUS_CODE = (status_code
 | (hard_error << 7)
 | ((NEST_LEVEL - 1) << 8)
 | ((software_code & FFFFh) << 16))
undo modifications to protected lines
release protected lines
NEST_LEVEL = 0
rSP = SAVED_rSP

30 Operation in ASF speculative regions Chapter 6

Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

rIP = SAVED_rIP
rAX = STATUS_CODE
set EFLAGS.{SF,ZF,AF,PF,CF,OF} according to rAX

6.2 Contention

6.2.1 Description

Contention is interference that other CPUs cause when they access memory that has previously
been protected. ASF aborts speculative regions under certain types of contention.

The following table summarizes how ASF handles contention in the case where CPU A performs
an operation while CPU B is in a speculative region with the line protected by ASF:

CPU A mode CPU A operation CPU B cache-line state

Protected Shared Protected Owned *

Speculative region LOCK MOVx (load) OK B aborts

Speculative region LOCK MOVx (store) B aborts B aborts

Speculative region LOCK PREFETCH OK B aborts

Speculative region LOCK PREFETCHW B aborts B aborts

Speculative region COMMIT OK OK

Any Read operation OK B aborts

Any Write operation B aborts B aborts

Any Prefetch operation OK B aborts

Any PREFETCHW B aborts B aborts

“Owned *” – Modified or owned

Chapter 6 Operation in ASF speculative regions 31

Preliminary Information — Subject to Change

ASF Proposed Specification 45432 Rev.   2.1 March 2009

6.2.2 Operation

Memory references:

// "CPU A" refers to the current CPU executing the memory reference;
// "CPU B" refers to another CPU
IF (memory reference contends with CPU B's ASF speculative region)
{
 CPU B -> abort speculative region (ASF_CONTENTION, 0, 0) // See

Section 6.1
}
execute memory reference

6.3 Disallowed instructions

Privileged instructions (those that must be executed at CPL = 0), instructions that cause a far
control transfer or an exception, and all instructions that can be intercepted by an SVM hypervisor
are not allowed in an ASF speculative region. This includes:

• FAR JMP, FAR CALL, FAR RET
• SYSCALL, SYSRET, SYSENTER, SYSEXIT
• INT, INT1, INT3, INTO, IRET, RSM
• BOUND, UD2
• PUSHF, POPF, PAUSE, HLT, CPUID, MONITOR, MWAIT, RDTSC, RDTSCP,

RDPMC
• IN, OUT
• SIDT, SLDT, SGDT, STR, SMSW
• All privileged instructions
• All SVM instructions

Attempting to execute these instructions causes an #GP fault, which will be handled as a far
control transfer (as described in the next section).

6.4 Far control transfers

6.4.1 Description

All far control transfers lead to an abort of the ASF speculative region. Far control transfers
include traps, faults, exceptions, NMIs, SMIs, unmasked interrupts, and disallowed instructions
converted into an exception (see previous section).

32 Operation in ASF speculative regions Chapter 6

Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

Instructions that directly or indirectly cause a far control transfer, described in Section 6.3, are not
allowed inside ASF speculative regions and will generate a #GP exception.

After aborting the speculative region, discarding any modified protected lines, and rolling back rIP
and rSP, ASF changes the abort status code to ASF_FAR and then executes the far control transfer.
Upon return from the far control transfer (or the fault handler invoked by the #GP caused by a
disallowed instruction), the conditional jump following SPECULATE can jump to a recovery
routine.

6.4.1.1 Imprecise exception reporting

Exceptions, like all other far control transfers, cause ASF speculative regions to be aborted.
Therefore, the rIP of the interrupted program that is pushed to the exception-handler stack does not
correspond to the instruction that caused the fault or trap (unless a fault occurred at the first
instruction after SPECULATE). For this reason, exceptions occurring while an ASF speculative
region was active are called imprecise exceptions.

ASF saves the rIP of the original fault or trap site in the ASF_EXCEPTION_IP MSR.

To signal that an imprecise exception has occurred, ASF uses a flag (Imprecise) in the rFLAGS
register image in the exception-handler stack frame or, in case the exception was intercepted, in
the VMCB.RFLAGS state-save-area field. The Imprecise flag bit in the rFLAGS register cannot
be set (it always reads as zero). Instructions that read rFLAGS from memory (such as IRET,
POPF, and VMRUN) mask out the Imprecise bit when restoring the rFLAGS register. VMRUN
uses VMCB.RFLAGS[Imprecise] only when injecting an exception or interrupt into a virtual
machine: If the bit is set, the injected event will be marked as imprecise.

Specifically, the rFLAGS image on the exception-handler stack and VMCB.RFLAGS are
extended as follows:

Bit Meaning

31 Imprecise: When this bit is set, the exception has aborted an ASF speculative region, and the rIP
pushed to the stack or saved to the VMCB may not correspond to the fault site. ASF sets this bit when
rolling back an aborted speculative region; in that case, the rIP points to the instruction following the
SPECULATE instruction. The ASF_EXCEPTION_IP MSR reports the original fault or trap site.

This bit is not available to interrupt handlers invoked through a 16-bit interrupt or trap gate.

The ASF_EXCEPTION_IP MSR will be overwritten every time an imprecise exception occurs.
To fully support ASF applications, operating systems should read this value as soon as possible
and pass it on to user-level exception handlers.

Chapter 6 Operation in ASF speculative regions 33

Preliminary Information — Subject to Change

ASF Proposed Specification 45432 Rev.   2.1 March 2009

6.4.1.2 Debug traps

When MSR DebugCtlMSR[DebugAbort] is cleared to 0, debug traps (#DB, caused by hardware
breakpoints or single stepping) are deferred until the speculative region ends. Otherwise, they
behave like the other far control transfers and abort the speculative region. (Please note that debug
traps that abort a speculative region are signaled as imprecise exceptions – see previous
subsection.)

In case of a debug trap, the debug-status register (DR6) reflects the conditions valid when the
configured breakpoint was hit. If the #DB exception is deferred, DR6 reflects the condition
immediately and is not protected from being overwritten before the exception is delivered. In
addition, DR6 can accumulate additional breakpoint information throughout the rest of the
speculative region.

6.4.1.3 Page faults

In case of page faults, CR2 (page-fault linear address) contains the actual page-fault address
before the rollback.

6.4.2 Operation

IF (far control transfer because of a disallowed instruction)
{
 tmp_hard_error = 1
 tmp_status_code = ASF_DISALLOWED_OP
}
ELSE
{
 tmp_hard_error = 0
 tmp_status_code = ASF_FAR
}
IF (CPU in speculative region)
{
 tmp_rIP = rIP
 abort speculative region (tmp_status_code, tmp_hard_error, 0) // See

Section 6.1
 IF (far control transfer = exception)
 {
 MSR ASF_EXCEPTION_IP = tmp_RIP
 if (exception intercepted)
 {
 VMCB.RFLAGS |= 2^31
 }
 ELSE
 {
 rFLAGS stack-image value |= 2^31
 }
 }

34 Operation in ASF speculative regions Chapter 6

Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

}
execute far control transfer

6.5 Memory access ordering

ASF speculative regions have a different memory access ordering model in that modifications to
protected lines cannot be observed from other CPUs until successful completion of a COMMIT
instruction, at which point they become visible at once.

While writes to memory locations in unprotected lines become visible in program order, the total
order of memory accesses in both protected and unprotected lines after COMMIT or RELEASE
(observed from another CPU) is implementation specific. If a stronger ordering model is desired,
software needs to insert LFENCE, SFENCE, and MFENCE instructions. For example, if all
unprotected memory writes should become visible before all protected ones, software can use
SFENCE immediately before COMMIT.

For all other memory modifications, the standard ordering rules apply. In particular, writes
occurring before SPECULATE always become visible before all writes in the speculative region –
both protected and unprotected ones (not considering incompatible caching types).

Example

Consider the following program:

MOV [mem1], 0
SPECULATE
JNZ error
LOCK MOV RAX, [mem3]
MOV [mem2], 0
LOCK MOV [mem3], 0
MOV [mem4], 0
COMMIT
MOV [mem5], 0

This program can expose any of the following memory write orders (assuming the speculative
region is not aborted):

1. mem1, mem2, mem3, mem4, mem5
2. mem1, mem2, mem4, mem3, mem5

Inserting SFENCE just before COMMIT forces the order to be the second one.

Even though writes to protected memory are held pending and do not become visible to other
CPUs before COMMIT, all writes (to protected or unprotected memory) appear to be in program
order on the executing CPU.

Chapter 6 Operation in ASF speculative regions 35

Preliminary Information — Subject to Change

ASF Proposed Specification 45432 Rev.   2.1 March 2009

Conventional LOCK-prefixed instructions (such as LOCK CMPXCHG; or XCHG, which has
implicit LOCK semantics) have unchanged behavior, including fencing semantics. However, note
that it is not possible to use conventional LOCK-prefixed instructions to manipulate ASF-
protected memory (only LOCK MOV store instructions can be used to update protected memory).

6.6 Updating Accessed and Dirty bits in page-table entries

When executing an ASF speculative region, the CPU updates the Accessed and Dirty bits of the
referenced page-table entries as it would if no speculative region were active. Speculative
modifications to protected memory locations thus leads to a set Dirty bit even if the modifications
are later discarded because of an abort.

The behavior caused by protecting memory lines (using declarator instructions) containing active
page tables (memory lines accessed and updated by the CPU's page-table walker) is undefined.

36 Operation in ASF speculative regions Chapter 6

Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

Chapter 7 ASF usage models

ASF provides considerable flexibility in the construction of synchronization methods. Some basic
usage examples are provided here for illustration.

7.1 Lock-free synchronization primitives

7.1.1 Double-word compare and swap

Double compare-and-swap (DCAS) is a primitive that allows atomic manipulation of pointer-
based data structures such as doubly linked lists, queues, and trees.

Unlike the example in Section 1.2, this version of DCAS does not implicitly retry in case of
contention or aborts, but leaves the retry (and the backoff) to application code. (Also, in that case
it does not return the current memory values.)

; DCAS Operation:
; IF ((mem1 = RAX) && (mem2 = RBX))
; {
; mem1 = RDI
; mem2 = RSI
; RCX = 0
; }
; ELSE
; {
; RCX = 1
; }
; (RAX, RBX, R8, R9 modified)
;
DCAS:

MOV R8, RAX
MOV R9, RBX
MOV RCX, 1
SPECULATE ; speculative region begins
JNZ fail ; Bail out if rolled back
LOCK MOV RAX, [mem1] ; Specification begins
LOCK MOV RBX, [mem2]
CMP R8, RAX ; DCAS semantics
JNZ out
CMP R9, RBX
JNZ out
LOCK MOV [mem1], RDI ; Update protected memory
LOCK MOV [mem2], RSI
XOR RCX, RCX

Chapter 7 ASF usage models 37

Preliminary Information — Subject to Change

ASF Proposed Specification 45432 Rev.   2.1 March 2009

out:
COMMIT ; End of speculative region

fail:

7.1.2 Load locked, store conditional

Load locked (LL) and store conditional (SC) are a pair of primitives that allow a store to occur
only if a previously loaded memory operand has not been changed.

Typical LL and SC instructions cannot directly be translated to ASF because ASF always rolls
back program flow to a point before the first memory reference. However, programs using LL and
SC can be expressed using ASF as follows:

SPECULATE ; LL/SC section begins
JNZ ll_sc_failed
LOCK MOV RAX, [mem]
...

 ; compute new value for mem in RAX
...
LOCK MOV [mem], RAX
COMMIT ; End of speculative region
...

; Error handling
ll_sc_failed:

...

In addition to traditional LL/SC semantics, ASF also supports pipelined LL/SC sequences:

SPECULATE ; LL/SC section begins
JNZ ll_sc_failed
LOCK MOV RAX, [mem1]
LOCK MOV RBX, [mem2]
LOCK MOV RCX, [mem3]
...
LOCK MOV [mem1], RAX
LOCK MOV [mem2], RBX
LOCK MOV [mem3], RCX
COMMIT ; End of speculative region

38 ASF usage models Chapter 7

Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

7.2 Lock-free data structures

ASF can be used to construct large speculative regions for manipulating lock-free data structures
for which simple primitives such as DCAS are not sufficient or not convenient.

7.2.1 LIFO list manipulation

Lock-free LIFO lists are common linked-list structures where elements can be added or removed
at the front of the list by manipulating a list header structure with a single compare-and-exchange
instruction, such as CMPXCHG8B. One typical use of such structures is for maintaining a pool of
buffers, where a buffer can be popped off the list as needed, and pushed back on when done with.
The compare-and-exchange manipulation of the header structure allows the list to be manipulated
simultaneously by competing threads without needing a global lock to provide mutually-exclusive
access.

This benefit comes with a couple of constraints:

1. The list header must include a version number along with the pointer to the top-most
element of the list in order to avoid the A–B–A problem where a concurrently executing, or
interrupted, pop operation could erroneously modify the header and break the list: When
popping off a list element A, the header is updated to point to the second element B, the
pointer for which is read from the link field of element A. However, in the time between
reading the pointer to B and updating the list header, the header might have been modified
multiple times. It might again point to A, but this time A's next pointer might reference a
different second element C. A compare-and-exchange operation comparing the list header
to A would succeed and change it to B, which might not even be an element of the list
anymore. A version number that is incremented each time the header is manipulated, and is
included in the compare-and-exchange operation, prevents such erroneous matching on
stale values. This requires a compare-and-exchange operation that is larger than the pointer
size, and a version field that is large enough that wrap-around causing a false match is
sufficiently unlikely.

2. Multiple elements cannot be removed from the list in one operation (although multiple
elements can be pushed on in one operation). This latter constraint comes from the fact that
one cannot safely walk the list to find the Nth element to point the header to when
removing N-1 elements, because other threads can be altering the list at the same time,
pushing elements on and/or popping them off.

ASF solves both of these issues. ASF eliminates the need for a version number because it allows
the header to be monitored while the top-most element’s link value is read and ultimately used to
update the header. Any intervening manipulation of the header, or interrupt of the sequence,
causes the operation to abort. Because element A’s link to B is read and used to update the pointer
atomically, the A-B-A problem does not exist.

Chapter 7 ASF usage models 39

Preliminary Information — Subject to Change

ASF Proposed Specification 45432 Rev.   2.1 March 2009

ASF also allows multiple elements to be removed from the list in a single operation. Because the
header can be continuously monitored while the list is being walked to find the Nth element, any
manipulation of the list during this time will be detected and the operation aborted. With the use of
the RELEASE instruction, there is a better chance that the list could be walked without exceeding
the hardware’s minimum guaranteed capacity. In any event, a suitable response to a hardware
capacity limitation, or high contention, would be to simply resort to popping elements from the list
one at a time, as is done today.

The following example code demonstrates single-element push and pop using ASF.

; PUSH_ELEM Operation:
; (INPUT: element ptr in RAX)
; (INPUT: list ptr in RBX)
; RAX->next = RBX->head
; RBX->head = RAX
; (RDX modified)
;
PUSH_ELEM:
retry:

SPECULATE
JNZ retry
LOCK MOV RDX, [RBX + head]
MOV [RAX + next], RDX
LOCK MOV [RBX + head], RAX
COMMIT
RET

; POP_ELEM Operation:
; (INPUT: list ptr in RBX)
; (RETURN: element ptr in RAX)
; RAX = RBX->head
; IF (RBX->head != 0)
; {
; RBX->head = RAX->next
; }
; (RDX modified)
;
POP_ELEM:
retry:

SPECULATE
JNZ retry
LOCK MOV RAX, [RBX + head]
TEST RAX, RAX
JZ end
MOV RDX, [RAX + next]
LOCK MOV [RBX + head], RDX

end:
COMMIT
RET

40 ASF usage models Chapter 7

Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

7.2.2 FIFO queue

The following example presents a FIFO queue implemented using ASF. Without ASF, lock-free
FIFO queues supporting multiple readers and writers have considerably higher overhead.

Note that ASF speculative regions can safely dereference pointers once they have been protected:
Pointer modifications on other CPUs (for example when elements are removed from the list) will
abort the speculative region.

; ENQUEUE Operation:
; (INPUT: element ptr in RAX)
; (INPUT: list ptr in RBX)
; RAX->next = 0
; IF (RBX->tail != 0)
; {
; tmp_ptr_next = & RBX->tail->next
; } ELSE {
; tmp_ptr_next = & RBX->head
; }
; *tmp_ptr_next = RAX
; RBX->tail = RAX
;
ENQUEUE:

MOV [RAX + next], 0
retry:

SPECULATE
JNZ retry
LOCK PREFETCH [RBX + head]
LOCK MOV RCX, [RBX + tail]
TEST RCX, RCX
JZ empty_list
LOCK PREFETCHW [RCX + next]
LEA RCX, [RCX + next]
JMP ok

empty_list:
LEA RCX, [RBX + head]

ok:
LOCK MOV [RCX], RAX
LOCK MOV [RBX + tail], RAX
COMMIT
RET

; DEQUEUE Operation:
; (INPUT: list ptr in RBX)
; (RETURN: element ptr in RAX)
; RAX = RBX->head
; IF (RBX->head != 0)
; {
; RBX->head = RAX->next
; IF (RBX->head = 0)
; {
; RBX->tail = 0

Chapter 7 ASF usage models 41

Preliminary Information — Subject to Change

ASF Proposed Specification 45432 Rev.   2.1 March 2009

; }
; }
;
DEQUEUE:
retry:

SPECULATE
JNZ retry
LOCK MOV RAX, [RBX + head]
LOCK PREFETCH [RBX + tail]
TEST RAX, RAX
JZ end
LOCK MOV RDX, [RAX + next]
LOCK MOV [RBX + head], RDX
TEST RDX, RDX
JNZ end
LOCK MOV [RBX + tail], RDX

end:
COMMIT
RET

7.2.3 Speculative region composition

ASF allows composing large speculative regions out of smaller ones. In effect, ASF flattens the
hierarchy of SPECULATE-COMMIT pairs into one large speculative region.

For example, a speculative region that removes a piece of data from one FIFO queue and puts it on
another one can be composed of the routines presented in the previous subsections as follows:

; DEQUEUE_ENQUEUE Operation:
; (INPUT: remove-list ptr in RBX)
; (INPUT: insert-list ptr in RAX)
DEQUEUE_ENQUEUE:
retry_spec:

SPECULATE
JNZ retry_spec
PUSH RAX
CALL DEQUEUE
POP RBX
CALL ENQUEUE
COMMIT
RET

7.3 Coexistence with lock-based critical sections

ASF can be used in conjunction with traditional non-ASF lock-based critical sections by including
a read declarator that refers to the lock variable and checking the value of the variable before
proceeding. The ASF speculative region tests and monitors the lock variable without modifying it.

42 ASF usage models Chapter 7

Preliminary Information — Subject to Change

45432 Rev.   2.1 March 2009 ASF Proposed Specification

For example, consider a data structure such as a B-tree. Concurrent users of the B-tree perform
frequent insert and delete operations in a lock-free manner using ASF. Occasionally the B-tree
needs rebalancing for efficiency, but such an operation would be beyond ASF’s capacity. A global
lock associated with the B-tree solves this problem in a straightforward manner: Each ASF
speculative region that operates on the B-tree first initiates monitoring of the lock variable with a
LOCK MOV and examines the current value of the lock. If the lock variable is set (indicating that
some other thread is rebalancing the B-tree), the speculative region commits without doing any
modifications (or programmatically aborts using the ABORT instruction) and then retries,
effectively spinning on the lock until it clears.

The code that implements the rebalancing operation does not use ASF. It is a traditional lock-
based critical section. It acquires the lock with (for example) a test-and-set-bit operation on the
lock variable. The resulting write to the lock variable forces any active ASF speculative regions to
abort, and upon retry they see that the lock variable is set and wait for it to clear. The rebalancing
procedure need not be concerned with other operations that may be in progress and can be
executed at any time.

; Delete operation
del_btree:
retry:

SPECULATE
JNZ retry
LOCK MOV EAX, btree_lock ; Check and monitor global lock
TEST EAX, EAX ; Rebalance in process?
JE nolock ; No
MOV EAX, ABORT_REBALANCING ; Software abort code
COMMIT ; Abort speculative region
JMP retry

nolock:
 ; Do the real work of deleting, using ASF
 ; If a rebalance starts, this section aborts

...
COMMIT ; Delete finished

;
;--
;
; Rebalance (does not use ASF)
rebalance_btree:

LOCK BTS btree_lock, 0 ; Acquire rebalance lock
JC done ; Another thread is rebalancing

 ; Do the rebalancing work
...
MOV btree_lock, 0 ; Release the lock

done:

This technique can also be used more generally as a fallback position for handling reference-
pattern-dependent capacity limitations or even contention situations. Depending on the specific
use case, it may be subject to some limitations of a traditional critical section, such as not being
able to (easily) abort a partially completed update, or provide strong isolation in the face of non-
mutex-based and non-ASF-based accesses to the shared data.

Chapter 7 ASF usage models 43

	Chapter 1Introduction
	1.1Overview
	1.1.1ASF guarantees
	1.1.2ASF limitations

	1.2Speculative region structure
	Example

	1.3Unprotected memory
	1.4Speculative region aborts
	1.5Nested speculative regions
	1.6Capacity

	Chapter 2Terminology
	Chapter 3CPUID identification
	3.1Detecting ASF presence and capabilities
	3.2Detecting the cache-line size

	Chapter 4Model-specific registers
	4.1ASF configuration MSR
	4.2ASF exception IP MSR
	4.3Debug-control MSR

	Chapter 5Instructions
	5.1SPECULATE
	5.1.1Instruction
	5.1.2Description
	5.1.3Operation
	5.1.4Flags affected

	5.2LOCK MOVx (load), PREFETCH, and PREFETCHW
	5.2.1Instruction
	5.2.2Description
	5.2.3Operation
	5.2.4Flags affected

	5.3LOCK MOVx (store)
	5.3.1Instruction
	5.3.2Description
	5.3.3Operation
	5.3.4Flags affected

	5.4COMMIT
	5.4.1Instruction
	5.4.2Description
	5.4.3Operation
	5.4.4Flags affected

	5.5ABORT
	5.5.1Instruction
	5.5.2Description
	5.5.3Operation
	5.5.4Flags affected

	5.6RELEASE
	5.6.1Instruction
	5.6.2Description
	5.6.3Operation
	5.6.4Flags affected

	Chapter 6Operation in ASF speculative regions
	6.1Aborts
	6.1.1Description
	6.1.2Operation

	6.2Contention
	6.2.1Description
	6.2.2Operation

	6.3Disallowed instructions
	6.4Far control transfers
	6.4.1Description
	6.4.1.1Imprecise exception reporting
	6.4.1.2Debug traps
	6.4.1.3Page faults

	6.4.2Operation

	6.5Memory access ordering
	Example

	6.6Updating Accessed and Dirty bits in page-table entries

	Chapter 7ASF usage models
	7.1Lock-free synchronization primitives
	7.1.1Double-word compare and swap
	7.1.2Load locked, store conditional

	7.2Lock-free data structures
	7.2.1LIFO list manipulation
	7.2.2FIFO queue
	7.2.3Speculative region composition

	7.3Coexistence with lock-based critical sections

