Barcelona:
AMD's Next-Generation
Quad-Core Microprocessor

Ben Sander
AMD Principal Member of Technical Staff
Introducing “Barcelona”…
Native quad-core upgrade for 2007

Native Quad-Core Processor
To increase performance-per-watt efficiencies using the same Thermal Design Power.

Advanced Process Technology
65nm Silicon-on Insulator Process
Fast transistors with low power leakage to reduce power and heat.

Platform Compatibility
Socket and thermal compatible with “Socket F”.

Direct Connect Architecture
- Integrated memory controller designed for reduced memory latency and increased performance
 - Memory directly connected
- Provides fast CPU-to-CPU communication
 - CPUs directly connected
- Glueless SMP up to 8 sockets
Agenda: A Closer Look at the Barcelona Processor

Comprehensive Upgrades for SSE128
Expandable shared L3 cache
IPC-enhanced CPU cores
Virtualization Performance
Advanced Power Management
More delivered DRAM Bandwidth
SSE 128 – What’s in it for the Customer?

Commercial and Consumer Benefits

<table>
<thead>
<tr>
<th>High Performance Technical Computing</th>
<th>Media Encode and Decode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil and Gas Sims</td>
<td>HD Video</td>
</tr>
<tr>
<td>EDA</td>
<td>Audio</td>
</tr>
<tr>
<td>Financial Analysis</td>
<td>DVD Authoring</td>
</tr>
<tr>
<td>BioScience</td>
<td></td>
</tr>
</tbody>
</table>

GOAL:
Double vector SSE performance
Both SSE Floating-point and SSE Packed Integer
Avoid creating bottlenecks in instruction or data delivery
Comprehensive Upgrades for SSE128

Current Generation versus Next Generation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Current Processor</th>
<th>“Barcelona”</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSE Exec Width</td>
<td>64</td>
<td>128 + SSE MOVs</td>
</tr>
<tr>
<td>Instruction Fetch Bandwidth</td>
<td>16 bytes/cycle</td>
<td>32 bytes/cycle + Unaligned Ld-Ops</td>
</tr>
<tr>
<td>Data Cache Bandwidth</td>
<td>2 x 64bit loads/cycle</td>
<td>2 x 128bit loads/cycle</td>
</tr>
<tr>
<td>L2/NB Bandwidth</td>
<td>64 bits/cycle</td>
<td>128 bits/cycle</td>
</tr>
<tr>
<td>FP Scheduler Depth</td>
<td>36 Dedicated x 64-bit ops</td>
<td>36 Dedicated x 128-bit ops</td>
</tr>
</tbody>
</table>

- Can perform SSE MOVs in the FP “store” pipe
 - Execute two generic SSE ops + SSE MOV each cycle (+ two 128-bit SSE loads)
- SSE Unaligned Load-Execute mode
 - Remove alignment requirements for SSE Id-op instructions
 - Eliminate awkward pairs of separate load and compute instructions
 - *Improve instruction packing and decoding efficiency*
CPU Core IPC Enhancements

- Advanced branch prediction
- 32B instruction fetch
- Sideband Stack Optimizer
- Out-of-order load execution
- TLB Optimizations
- Data-dependent divide latency
- More Fastpath instructions
 - CALL and RET-Imm instructions
 - Data movement between FP & INT
- Bit Manipulation extensions
 - LZCNT/POPCNT
- SSE extensions
 - EXTRQ/INSERTQ,
 - MOVNTSD/MOVNTSS
CPU Core IPC Enhancements

- Advanced branch prediction
- 32B instruction fetch
- Sideband Stack Optimizer
- Out-of-order load execution
- TLB Optimizations
- Data-dependent divide latency
- More Fastpath instructions
 - CALL and RET-Imm instructions
 - Data movement between FP & INT
- Bit Manipulation extensions
 - LZCNT/POPCNT
- SSE extensions
 - EXTRQ/INSERTQ,
 - MOVNTSD/MOVNTSS

- Dedicated 512-entry Indirect Predictor
- Double return stack size
- More branch history bits and improved branch hashing
CPU Core IPC Enhancements

- Advanced branch prediction
- **32B instruction fetch**
- Sideband Stack Optimizer
- Out-of-order load execution
- TLB Optimizations
- Data-dependent divide latency
- More Fastpath instructions
 - CALL and RET-Imm instructions
 - Data movement between FP & INT
- Bit Manipulation extensions
 - LZCNT/POPCNT
- SSE extensions
 - EXTRQ/INSERTQ,
 - MOVNTSD/MOVNTSS

- Benefits integer code too
- Reduced split-fetch instruction cases
CPU Core IPC Enhancements

- Advanced branch prediction
- 32B instruction fetch
- **Sideband Stack Optimizer**
 - Out-of-order load execution
 - TLB Optimizations
 - Data-dependent divide latency
 - More Fastpath instructions
 - CALL and RET-Imm instructions
 - Data movement between FP & INT
 - Bit Manipulation extensions
 - LZCNT/POPCNT
 - SSE extensions
 - EXTRQ/INSERTQ,
 - MOVNTSD/MOVNTSS
- Perform stack adjustments for PUSH/POP operations “on the side”
- Stack adjustments don’t occupy functional unit bandwidth
- Breaks serial dependence chains for consecutive PUSH/POP operations
CPU Core IPC Enhancements

- Advanced branch prediction
- 32B instruction fetch
- Sideband Stack Optimizer
- **Out-of-order load execution**
- TLB Optimizations
- Data-dependent divide latency
- More Fastpath instructions
 - CALL and RET-Imm instructions
 - Data movement between FP & INT
- Bit Manipulation extensions
 - LZCNT/POPCNT
- SSE extensions
 - EXTRQ/INSERTQ,
 - MOVNTSD/MOVNTSS

► **New technology allows load instructions to bypass:**
 - Other loads
 - Other stores which are known not to alias with the load

► **Significantly mitigates L2 cache latency**
CPU Core IPC Enhancements

- Advanced branch prediction
- 32B instruction fetch
- Sideband Stack Optimizer
- Out-of-order load execution

TLB Optimizations
- Data-dependent divide latency
- More Fastpath instructions
 - CALL and RET-Imm instructions
 - Data movement between FP & INT
- Bit Manipulation extensions
 - LZCINT/POPCINT
- SSE extensions
 - EXTRQ/INSERTQ,
 - MOVNTSD/MOVNTSS

- **Support for 1G pages**
- **48bit physical address**
- **Larger TLBs key for:**
 - Virtualized workloads
 - Large-footprint databases and transaction processing

- **DTLB**
 - Fully-associative 48-way TLB (4K, 2M, 1G)
 - Backed by L2 TLBs:
 - 512 x 4K, 128 x 2M

- **ITLB**
 - 16 x 2M entries
CPU Core IPC Enhancements

- Advanced branch prediction
- 32B instruction fetch
- Sideband Stack Optimizer
- Out-of-order load execution
- TLB Optimizations
- Data-dependent divide latency
- More Fastpath instructions
 - CALL and RET-Imm instructions
 - Data movement between FP & INT
- Bit Manipulation extensions
 - LZCNT/POPCNT
- SSE extensions
 - EXTRQ/INSERTQ,
 - MOVNTSD/MOVNTSS
DRAM Basics

- Complex access protocol:
 - ACT to load row into sense amp
 - READ column from sense amp
 - PRECHARGE to reset sense amp

- Efficient Access Requires:
 - Access different banks
 - 4-8 banks/chip
 - 1-4 chips/channel
 - Column locality
Trends in DRAM bandwidth

Improved Efficiency is the Answer

Higher per-socket bandwidth demands

Diverse streams increase conflicts

DRAM efficiency declining

We must improve *delivered* DRAM bandwidth
Delivering more DRAM bandwidth

- Independent DRAM controllers
- Optimized DRAM paging
- Re-architect NB for higher BW
- Write bursting
- DRAM prefetcher
- Core prefetchers

- Concurrency
- More DRAM banks
 - reduces page conflicts
- Longer burst length
 - improves command efficiency
Delivering more DRAM bandwidth

- Independent DRAM controllers

Optimized DRAM paging

- Re-architect NB for higher BW
- Write bursting
- DRAM prefetcher
- Core prefetchers

增加页面命中，减少页面冲突

历史基于模式预测器
Delivering more DRAM bandwidth

- Independent DRAM controllers
- Optimized DRAM paging
- Re-architect NB for higher bw
 - Increase buffer sizes
 - Optimize schedulers
 - Ready to support future DRAM technologies
- Write bursting
- DRAM prefetcher
- Core prefetchers
Delivering more DRAM bandwidth

- Independent DRAM controllers
- Optimized DRAM paging
- Re-architect NB for higher BW

- Write bursting
- Minimize Rd/Wr Turnaround
- DRAM prefetcher
- Core prefetchers
Delivering more DRAM bandwidth

- Independent DRAM controllers
- Optimized DRAM paging
- Re-architect NB for higher BW
- Write bursting

DRAM prefetcher

- Track positive and negative, unit and non-unit strides
- Dedicated buffer for prefetched data
- Aggressively fill idle DRAM cycles

- Core prefetchers
Delivering more DRAM bandwidth

- Independent DRAM controllers
- Optimized DRAM paging
- Re-architect NB for higher BW
- Write bursting
- DRAM prefetcher

Core prefetchers

- **DC Prefetcher** fills directly to L1 Cache
- **IC Prefetcher** more flexible
 - 2 outstanding requests to any address
Balanced, Highly Efficient Cache Structure

Dedicated L1
- Locality keeps most critical data in the L1 cache
- Lowest latency
- 2 loads per cycle

Dedicated L2
- Sized to accommodate the majority of working sets today
- Dedicated to eliminate conflicts common in shared caches
 - Better for Virtualization

Shared L3 – NEW
- Victim-cache architecture maximizes efficiency of cache hierarchy
- Fills from L3 leave likely shared lines in the L3
- Sharing-aware replacement policy
- Ready for expansion at the right time for customers
Virtualization Background

• Why virtualize?
 – Huge cost savings through consolidation
 – Disaster recovery – can move OSs to a new server.
 – Expect 40% of x86 servers will be virtualized in next 3 years!
 – Consumer applications as well

• AMD-V status
 – Hardware virtualization support available now
 – Simplifies software investment for Hypervisor development
 – Improved security via AMD-V Device Exclusion Vector
 – Better performance from AMD-V tagged TLBs
Virtualized Address Translation

- Virtualization adds a new level of address translation in the Hypervisor
 - Guest physical to Host physical

- Current Technology: Shadow Paging
 - Software-only approach to virtualized address translation
 - Complex and slow
Faster Virtualization Performance

- **Nested Paging (NP)**
 - Guest and Host page tables both exist in memory
 - *The processor walks both guest and host page tables*
 - Nested walk can have up to 24 memory accesses!
 - *Hardware caching accelerates the walk*
 - “Wire-to-wire” translations are cached in TLBs
 - NP eliminates Hypervisor cycles spent managing shadow pages
 - *As much as 75% of Hypervisor time*

- **Barcelona also reduces world-switch time by 25%**
 - World-switch time: round-trip to the Hypervisor and back
Advanced Power Management

- Separate CPU core and Northbridge power planes
 - Allow processors to reduce voltage while NB continues to run
 Power savings
 - Also can apply additional voltage to NB to raise the NB frequency
 Performance boost in power-constrained platforms

- Enhanced PowerNow!
 - Ability to *dynamically* and *individually* adjust core frequencies for improved power efficiency

```
        100% Workload
        50% Workload
          Idle
          Idle

45% Power State
```
Quad-core System Power

2P System

- 190 watts for processors
- 16 watts for chipset
- 35.2 watts for DDR2

- Direct Connect Savings:
 - *No external memory controller* – saves 25 watts
 - *No FBDIMM* – saves 48 watts

- System power is the metric that matters to our customers.
- Direct Connect helps reduce system power.
Summary

• “Barcelona”:
 - Native quad-core upgrade planned for 2007

• Processor Details
 - Comprehensive upgrades for SSE128
 Upgrade Execution, Instruction, and Data Bandwidth
 - IPC-enhanced core
 Boost core performance
 - More delivered DRAM bandwidth
 Even from the same DRAM technology
 - L3 Cache Architecture
 Shared and expandable
 - Virtualization performance
 Nested paging and faster world-switches
 - Advanced power management
 Optimize system power
Questions and Thank you!