A balanced architecture with enhanced cores, memory, I/O, and security is a better choice for software-defined infrastructure.

TRANSITION FROM PHYSICAL TO VIRTUAL

The drive to virtualization and cloud computing has propelled a paradigm shift from physical to virtual infrastructure. Now storage is virtualized along with computing. Software-defined storage can be file, block, or object-based. Tenants, clients and applications can spin up dedicated storage without the expense and delay of configuring physical devices.

SOFTWARE-DEFINED INFRASTRUCTURE CHALLENGES

Different software-defined infrastructure (SDI) has different requirements:

- SERVER VIRTUALIZATION needs more resource density—more cores, more memory, more I/O.
- SOFTWARE-DEFINED STORAGE needs less computing power but requires high-speed networking and highly parallel access to disk storage.
- SECURE MULTITENANCY is essential to isolate multiple tenants, clients, and applications.
- DATACENTER FLEXIBILITY is limited by processors with feature sets dependent on number of cores.

WHY AMD EPYC FOR SDI?

AMD EPYC™ processors address SDI challenges with a product line that delivers the appropriate balance of compute, memory & I/O resources and consistent feature enhancements across the entire product stack. As a result, the AMD EPYC product line supports a wide range of SDI needs:

COMPUTING FLEXIBILITY
- Up to 32 cores for more virtual machine capability per socket
- Scale down to 8 cores and help reduce cost
- Consistent memory capacity, I/O, and security features across the AMD EPYC™ 7000 Series family

MORE MEMORY CAPACITY
- Support more richly configured virtual machines
- Less paging latency
- Better user experience.
- Support larger in-memory databases, caches, and indexes

MORE I/O
- Up to 128 lanes of PCIe™ bandwidth
- Connect to very high-bandwidth network interfaces, hard disk drives, and high-speed NVMe drives.
- Linear scaling from 1 to 16 NVMe drives

MORE DRIVES
- Built-in interfaces support NVMe drives and SATA disks with no need for PCIe switches or HBAs

EMBEDDED SECURITY PROCESSOR
- Hardware encryption acceleration delivers protection through whole-memory encryption
- Can decrypt disk data within a hardware-encrypted buffer to limit exposure of unencrypted data
- Protect against a class of memory-based attacks
PROVEN AMD EPYC ADVANTAGES

Service providers and enterprise datacenters can achieve the following benefits with AMD EPYC.

Compare an AMD EPYC 7601 CPUs to an Intel Xeon Platinum 8180 CPU and you get:

- 14% **MORE CORES**
- 33% **MORE MEMORY BANDWIDTH**
- 33% **MORE I/O BANDWIDTH**

Compare two AMD EPYC 7601 CPUs to two Intel Xeon Gold 5118 CPUs and you get:

- **UP TO 90% MORE PERFORMANCE PER DOLLAR**

AMD EPYC-based servers deliver increased I/O throughput and linear scaling useful in software-defined storage environments:

- **MORE THAN 9 MILLION READ IOPS**
- **MORE THAN 7 MILLION WRITE IOPS**

WHY AMD

We understand the needs for software-defined infrastructure, and whether you are building software-defined storage appliances, virtualized environments, or hyperconverged systems, we offer the CPU and I/O performance, flexibility and security that you need.

For more information visit amd.com/EPYC.

FOOTNOTES

1. AMD EPYC 7601 processor includes up to 32 CPU cores versus the Xeon Platinum 8180 processor with 28 CPU cores. NAP-43
2. AMD EPYC 7601 processor supports up to 8 channels of DDR4-2667, versus the Xeon Platinum 8180 processor at 6 channels of DDR4-2667. NAP-42
3. AMD EPYC 7601 processor supports 128 lanes of PCIe bandwidth directly connected to the CPU, versus the Xeon Platinum 8180 processor with 96 lanes
4. Based on SPECint®_rate2006 scores published on www.spec.org as of October 25, 2017. 2 x EPYC 7601 CPU ($4,200 per processor at AMD 1ku pricing) in Sugon A620-G30, Ubuntu 17.04, x86 Open64 v4.5.2.1 Compiler Suite, 512 GB PC4-2666V-R memory running at 2400, 1 TB SATA 7200RPM has a peak score of 2400 (base score 2150); versus 2P Xeon Platinum 8180 ($10,009 per processor per ark.intel.com)-based Cisco UCS C240 M5 system with SUSE Linux Enterprise Server 12 SP2, ICC 17.0.3.191, 384GB PC4-2666V-R memory, 1x600GB SAS 10000RPM score of 3010 (base score 2890). SPEC and SPECint are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information. NAP-48
5. 1 x EPYC 7601 CPU in HPE Cloudline CL3150, Ubuntu 17.04 4.10 kernel (Scheduler changed to NOOP, CPU governor set to performance), 256 GB (8 x 32GB 2Rx4 PC4-2666) memory, 24 x Samsung pm1725a NVMe drives (with only 16 enabled): FIO v2.16 (4 Jobs per drive, IO Depth of 32, 4K block size) Average Read IOPs 9,178,000 on 100% Read Test (Average BW 35.85 GB/s); FIO (4 jobs per drive, IO depth of 10, 4K block size) Average Write IOPs 7,111,000 on 100% Write Test (Average BW 27.78 GB/s) Each run was done for 30 seconds with a 10 second ramp up using 16 NVMe drives. NAP-24
6. AMD EPYC processor offers up to 128GB LRDIMM in 2 DIMM per channel config, so up to 256GB/channel x 8 channels = 2,048 TB/processor, versus the Xeon E5-2699A v4 processor at 128GB LRDIMM in 3 DIMM per channel config, so up to 384GB/channel x 4 channels = 1.54 TB/processor. NAP-04