THE FUTURE OF THE APU – BRAIDED PARALLELISM
Session 2901

Benedict R. Gaster
AMD
Programming Models Architect

Lee Howes
AMD
MTS Fusion System Software
PROGRAMMING MODELS
A Track Introduction

Benedict Gaster
AMD
Programming Models Architect
PROGRAMMING MODELS TRACK IS HERE

- GPU architectures are available as we speak
- x86 APU architectures are available as we speak
- Next generation GPU architectures will be covered at this summit!
- Next generation x86 APU architectures will be covered at this summit!
- For those people in the audience who want to develop for such devices:
 - How should we view these architectures?
 - What programming models exist or can we expect?
 - What are the new tricks and tips needed to program these architectures?
- The answers to these questions and many more is what this track is all about
PROGRAMMING MODELS TRACK | Tuesday and Wednesday

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
<th>Tuesday</th>
<th>Wednesday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessions</td>
<td>9:45 - 10:30</td>
<td>The Future of the APU – Braided Parallelism</td>
<td>Developing Scalable Applications with Microsoft’s C++ Concurrency Runtime</td>
</tr>
<tr>
<td>Sessions</td>
<td>10:45 - 11:30</td>
<td>Cilk Plus: Multi-core Extensions for C and C++</td>
<td>The Future of Parallel and Asynchronous Programming with the .NET Framework</td>
</tr>
<tr>
<td>Lunch & Keynote</td>
<td>12:45 - 1:30</td>
<td>Lunch & Keynote</td>
<td></td>
</tr>
<tr>
<td>Sessions</td>
<td>2:00 - 2:45</td>
<td>Diderot: A Parallel Domain-Specific Language for Image Analysis and Visualization // Pixel Bender // Domain Specific Tools to Expand the Code Synthesis Design Space</td>
<td>Heterogeneous Computing with Multi-core Processors, GPUs and FPGAs // Braided Parallelism for Heterogeneous Systems // Making OpenCL™ Simple with Haskell</td>
</tr>
<tr>
<td>Sessions</td>
<td>3:00 - 3:45</td>
<td>Sessions</td>
<td></td>
</tr>
<tr>
<td>Sessions</td>
<td>4:00 - 5:00</td>
<td>AMD Graphics Core Next</td>
<td>Advanced Graphics Functionality on Windows Using DirectX</td>
</tr>
<tr>
<td>Sessions</td>
<td>5:15 - 6:00</td>
<td>Automatic Intra-Application Load Balancing for Heterogeneous Systems</td>
<td>Towards High-Productivity on Heterogeneous Systems</td>
</tr>
</tbody>
</table>
PROGRAMMING MODELS TRACK | Thursday

<table>
<thead>
<tr>
<th>Sessions</th>
<th>Time</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8:30 - 9:15</td>
<td>Real-Time Concurrent Linked List Construction on the GPU</td>
</tr>
<tr>
<td></td>
<td>9:30 - 10:15</td>
<td>Physics Simulation on Fusion Architectures</td>
</tr>
</tbody>
</table>
THE FUSION APU ARCHITECTURE
A Programmer’s Perspective

Lee Howes
AMD
MTS Fusion System Software
FUSION IS HERE

- x86 + Radeon APU architectures are available as we speak

- For those people in the audience who want to develop for such devices:
 - How should we view these architectures?
 - What programming models exist or can we expect?
TAKING A REALISTIC LOOK AT THE APU

- GPUs are not magic
 - We’ve often heard about 100x performance improvements
 - These are usually the result of poor CPU code

- The APU offers a balance
 - GPU cores optimized for arithmetic workloads and latency hiding
 - CPU cores to deal with the branchy code for which branch prediction and out of order execution are so valuable
 - A tight integration such that shorter, more tightly bound, sections of code targeted at the different styles of device can be linked together
Different design goals:
- CPU design is based on maximizing performance of a single thread
- GPU design aims to maximize throughput at the cost of lower performance for each thread

CPU use of area:
- Transistors are dedicated to branch prediction, out of order logic and caching to reduce latency to memory

GPU use of area:
- Transistors concentrated on ALUs and registers
- Registers store thread state and allow fast switching between threads to cover (rather than reduce) latency
HIDING OR REDUCING LATENCY

- Any instruction issued might stall waiting on memory or at least in the computation pipeline
HIDING OR REDUCING LATENCY

- Any instruction issued might stall waiting on memory or at least in the computation pipeline.
- Out of order logic attempts to issue as many instructions as possible as tightly as possible, filling small stalls with other instructions from the same thread.
Larger memory stalls are harder to cover.

Memory can be some way from the ALU:
- Many cycles to access

Diagram:
- Memory
- Lanes 0-3
- Stall
- Instruction 0
- Instruction 1
Larger memory stalls are harder to cover

Memory can be some way from the ALU
 - Many cycles to access

CPU solution is to introduce an intermediate cache memory
 - Minimizes the latency of most accesses
 - Reduces stalls
HIDING LATENCY ON THE GPU

- AMD’s GPU designs do two things:
 - Issue an instruction over multiple cycles
 - Interleave instructions from multiple threads

- Multi-cycle a large vector on a smaller vector unit
 - Reduces instruction decode overhead
 - Improves throughput

- Multiple threads fill gaps in instruction stream

- Single thread latency can actually INCREASE
GPU CACHES

- GPUs also have caches
 - The goal is generally to improve spatial locality rather than temporal
 - Different parts of a wide SIMD thread and different threads may require similar locations and share through the cache
COSTS

- The CPU approach:
 - Requires large caches to maximize the number of memory operations caught
 - Requires considerable transistor logic to support the out of order control

- The GPU approach:
 - Requires wide hardware vectors, not all code is easily vectorized
 - Requires considerable state storage to support active threads

- These two approaches suit different algorithm designs

- We cannot, unfortunately, have both in a single core
THE TRADEOFFS IN PICTURES

- **AMD Phenom™ II X6:**
 - 6 cores, 4-way SIMD (ALUs)
 - A single set of registers
 - Registers are backed out to memory on a thread switch, and this is performed by the OS

- **AMD Radeon™ HD6970:**
 - 24 cores, 16-way SIMD (plus VLIW issue, but the Phenom processor does multi-issue too), 64-wide SIMD state
 - Multiple register sets (somewhat dynamic)
 - 8, 16 threads per core
AREA EFFICIENCY TRADEOFFS

- So what did we see?
 - Diagrams were vague, but...
 - Large amount of orange! Lots of register state
 - Also more green on the GPU cores

- The APU combines the two styles of core:
 - The E350 has two “Bobcat” cores and two “Cedar”-like cores, for example
 - 2- and 8-wide physical SIMD
THE CPU PROGRAMMATICALLY: A TRIVIAL EXAMPLE

What’s the fastest way to perform an associative reduction across an array on a CPU?

- Take an input array
- Block it based on the number of threads (one per core usually, maybe 4 or 8 cores)
- Iterate to produce a sum in each block
- Reduce across threads
- Vectorize

```c
float sum(0, 0, 0, 0)
for (i = n/to (nb)b)/4)
    sum += input[i]
float scalarSum = sum.x + sum.y + sum.z + sum.w

float reductionValue(0)
for (t in threadCount)
    reductionValue += t.sum
```
THE GPU PROGRAMMATICALLY: THE SAME TRIVIAL EXAMPLE

What’s the fastest way to perform an associative reduction across an array on a GPU?

- Take an input array
- Block it based on the number of threads (8 or so per core, usually, up to 24 cores)
- Iterate to produce a sum in each block
- Reduce across threads
- Vectorize (this bit may be a different kernel dispatch given current models)

```
float sum( 0 )
for( i = n to n + b )
    sum += input[ i ]
float reductionValue( 0 )
for( t in threadCount )
    reductionValue += t.sum

float sum( 0, …, 0 )
for( i = n/64 to (n + b)/64 )
    sum += input[ i ]
float scalarSum = waveReduce(sum)
```

Current models ease programming by viewing the vector as a set of scalars ALUs, apparently though not really independent, with varying degree of hardware assistance (and hence overhead):

```
float sum( 0 )
for( i = n/64 to (n + b)/64; i += 64 )
    sum += input[ i ]
float scalarSum = waveReduceViaLocalMemory(sum)
```
THEY DON’T SEEM SO DIFFERENT!

- More blocks of data
 - More cores
 - More threads

- Wider threads
 - 64 on high end AMD GPUs
 - 4/8 on current CPUs

- Hard to develop efficiently for wide threads
- Lots of state, makes context switching and stacks problematic

```c
float64 sum( 0, …, 0 )
for( i = n/64 to (n + b)/64 )
    sum += input[i]
float scalarSum = waveReduce(sum)

float4 sum( 0, 0, 0, 0 )
for( i = n/4 to (n + b)/4 )
    sum += input[i]
float scalarSum = sum.x + sum.y + sum.z + sum.w

float64 sum( 0, …, 0 )
for( i = n/64 to (n + b)/64 )
    sum += input[i]
float scalarSum = waveReduce(sum)
```
THAT WAS TRIVIAL… MORE GENERALLY, WHAT WORKS WELL?

- On GPU cores:
 - We need a lot of data parallelism
 - Algorithms that can be mapped to multiple cores and multiple threads per core
 - Approaches that map efficiently to wide SIMD units
 - So a nice simple functional “map” operation is great!

```
Array
O p O p O p ...
```

```
Array.map(Op)
```

- This is basically the OpenCL™ model
WHAT WORKS WELL?

- On CPU cores:
 - Some data parallelism for multiple cores
 - Narrow SIMD units simplify the problem: pixels work fine rather than data-parallel pixel clusters
 - Does AVX change this?
 - High clock rates and caches make serial execution efficient
 - So in addition to the simple map (which boils down to a for loop on the CPU), we can do complex task graphs
SO TO SUMMARIZE THAT

Fine-grain data parallel Code

Nested data parallel Code

Coarse-grain data parallel Code

Discrete GPU configurations suffer from communication latency.

Nested data parallel/braided parallel code benefits from close coupling.

Discrete GPUs don’t provide it well.

But each individual core isn’t great at certain types of algorithm…

Maps very well to integrated SIMD dataflow (ie: SSE)

Loop 16 times for 16 pieces of data

2D array representing very large dataset

Maps very well to Throughput-oriented data parallel engines

Parallelism. Benefits from closer coupling between CPU & GPU

Loop 1M times for 1M pieces of data

D2 array representing very large dataset

Loop 16 times for 1M pieces of data

Load x(i)
fmul
Store
Cmp i (100000)
bc
SO WHAT APPLICATIONS BENEFIT?

- Tight integration of narrow and wide vector kernels
- Combination of high and low degrees of threading
- Fast Turnaround
 - Communication between kernels
 - Shared buffers
- For example:
 - Generating a tree structure on the CPU cores, processing the scene on the GPU cores
 - Mixed scale particle simulations (see a later talk)
SO TO SUMMARIZE THAT

Fine-grain data parallel Code

- Loop 16 times for 16 pieces of data
- Maps very well to integrated SIMD dataflow (ie: SSE)

Nested data parallel Code

- Lots of conditional data parallelism. Benefits from closer coupling between CPU & GPU

Coarse-grain data parallel Code

- Loop 1M times for 1M pieces of data
- Maps very well to Throughput-oriented data parallel engines

2D array representing very large dataset

Loop 16 times for 16 pieces of data

i=0
i++
load x(i)
fmul
store
cmp i (16)
bc

i=0
i++
load x(i)
fmul
store
cmp i (100000)
bcc

cmp j (100000)
bcc

Fine-grain data parallel Code

- Loop 16 times for 16 pieces of data
- Maps very well to integrated SIMD dataflow (ie: SSE)

Nested data parallel Code

- Lots of conditional data parallelism. Benefits from closer coupling between CPU & GPU

Coarse-grain data parallel Code

- Loop 1M times for 1M pieces of data
- Maps very well to Throughput-oriented data parallel engines

2D array representing very large dataset

Loop 16 times for 16 pieces of data

i=0
i++
load x(i)
fmul
store
cmp i (16)
bcc

cmp j (100000)
bcc
HOW DO WE USE THESE DEVICES?

- Heterogeneous programming isn’t easy
 - Particularly if you want performance

- To date:
 - CPUs with visible vector ISAs
 - GPUs mostly lane-wise (implicit vector) ISAs
 - Clunky separate programming models with explicit data movement

- How can we target both?
 - With a fair degree of efficiency
 - True shared memory with passable pointers

- Let’s talk about the future of programming models…
PROGRAMMING MODELS
For Heterogeneous Computing
Benedict Gaster
AMD
Programming models architect
INDUSTRY STANDARD API STRATEGY

OpenCL™
- Open development platform for multi-vendor heterogeneous architectures
- The power of AMD Fusion: Leverages CPUs and GPUs for balanced system approach
- Broad industry support: Created by architects from AMD, Apple, IBM, Intel, NVIDIA, Sony, etc. AMD is the first company to provide a complete OpenCL solution
- Momentum: Enthusiasm from mainstream developers and application software partners

DirectX® 11 DirectCompute
- Microsoft distribution
- Easiest path to add compute capabilities to existing DirectX applications
Moving Past Proprietary Solutions for Ease of Cross-Platform Programming

Open and Custom Tools
- High Level Language Compilers
- Application Specific Libraries

High Level Tools

Industry Standard Interfaces
- DirectX®
- OpenCL™
- OpenGL®

AMD GPUs

AMD CPUs

Other CPUs/GPUs

OpenCL -
- Cross-platform development
- Interoperability with OpenGL and DX
- CPU/GPU backends enable balanced platform approach
HETEROGENEOUS COMPUTING | Software Ecosystem

- Encourages contributions from established companies, new companies, and universities
- Overarching goal is to enable widespread and highly productive Software development

End-user Applications

- **Hardware & Drivers:** AMD Fusion, Discrete CPUs/GPUs
- **OpenCL & DirectCompute Runtimes**
- **Middleware/Libraries:** Video, Imaging, Math/Sciences, Physics
- **High Level Frameworks**
- **Tools:** HLL compilers, Debuggers, Profilers

Advanced Optimizations & Load Balancing

- Load balance across CPUs and GPUs; leverage AMD Fusion performance advantages

Increase ease of application development

Drive new features into industry standards

Increase ease of application development
TODAY’S EXECUTION MODEL

- **SPMD**
 - Same kernel runs on:
 - All compute units
 - All processing elements
 - Purely “data parallel” mode
 - Device model:
 - Device runs a single kernel simultaneously
 - Separation between compute units is relevant for memory model only.
TOMORROW
MODERN GPU (& CPU) CAPABILITIES

- Modern GPUs can execute a different instruction stream per core
 - Some even have a few HW threads per core (each runs separated streams)

- This is still a highly parallelized machine!
 - HW thread executes N-wide vector instructions (8-64 wide)
 - Scheduler switches HW threads on the fly to hide memory misses
FUSION SYSTEM ARCHITECTURE ROADMAP

Physical Integration
- Integrate CPU & GPU in silicon
- Unified Memory Controller
- Common Manufacturing Technology

Optimized Platforms
- AMD Fusion Interconnect
- GPU Compute C++ support
- Bi-Directional Power Mgmt between CPU and GPU

Architectural Integration
- Unified Address Space for CPU and GPU
- GPU uses pageable system memory via CPU pointers
- Fully coherent memory on both CPU and GPU
- User mode scheduling

System Integration
- GPU compute context switch
- GPU graphics pre-emption
- Quality of Service
- Coherent PCIe®
TOMORROW’S EXECUTION MODEL

- **MPMD**
 - Same kernel runs on:
 - 1 or more compute units
 - Still “data parallel”
 - Device model:
 - Device can runs multiple kernels simultaneously
TOMORROW’S EXECUTION MODEL

- Nested data parallelism
 - Kernels can enqueue work
TOMORROW’S EXECUTION MODEL | Visual Example

Host

enqueue()

queue

Device
TOMORROW’S EXECUTION MODEL | Visual Example

Host

enqueue()

queue

Device

enqueue()

queue
TOMORROW'S EXECUTION MODEL | Visual Example

Host

Device

queue
TOMORROW’S EXECUTION MODEL | Visual Example

Process returned queue for enqueue to devices

Host

Device
TOMORROW’S EXECUTION MODEL | Visual Example

Host

enqueue()

Device

queue

queue
TOMORROW’S EXECUTION MODEL | Visual Example

Host

enqueue()

Device

enqueue()

enqueue()

Device self schedules

groups

queue

queue
TOMORROW'S EXECUTION MODEL

Key:
- task of work
- SIMD core
- Schedule work (e.g., steal or push).
- Schedule work through the CPU (e.g., spawn new work). This is not supported by today's persistent thread models.
TOMORROW’S HIGH LEVEL BRAIDED PARALLEL MODEL

- High-level programming model
 - Braided parallelism (task + data-parallel)
 - Hardware independent access to the memory model
 - Based on C++0x (Lambda, auto, decltype, and rvalue references)

- Will support all C++ capabilities
 - GPU kernels/functions can be written in C++
 - Not an implication that everything should be used on all devices
TOMORROW'S HIGH LEVEL BRAIDED PARALLEL MODEL

- Leverage host language (C++) concepts and capabilities
 - Separately authored functions, types and files
 - Libraries reuse (link-time code-gen required)
 - Binaries contain compiled device-independent IL and x86 code

- Dynamic online compilation still an option
TOMORROW'S HIGH LEVEL BRAIDED PARALLEL MODEL

- Multi dimensional: Range and Index, Partition, and IndexRange

- Data Parallel Algorithms
 - Examples: parallelFor, parallelForWithReduce

- Task Parallel Algorithms
 - Examples: Task<T>, Future<T>

- Task + Data Parallelism = Braided Parallelism

- Low-level concepts are still available for performance
 - Work-groups, Work-items, shared memory, shared memory barriers
 - A layered programming model with ease-of-use and performance tradeoffs
HELLO WORLD OF THE GPGPU WORLD (I.E. VECTOR ADD)

```c
int main(void) {
    float A[SIZE]; float B[SIZE]; float C[SIZE];
    srand ( time(NULL) );
    for (int i = 0; i < SIZE; i++) {
        A[i] = rand(); B[i] = rand();
    }
    parallelFor(Range<1>(size),  [A,B,C] (Index<1> index) [[device]] {
        C[index.getX()] = A[index.getX()] + B[index.getX()];
    });
    for (float i: C) {
        cout << i << endl;
    }
}
```
TASKS AND FUTURES

```cpp
int parallelFib(int n) {
    if (n < 2) {
        return n;
    }

    Future<int> x([n] () [[device]]) {
        return parallelFib(n-1);
    };

    int y = parallelFib(n-2);
    return x.get() + y;
}
```

```cpp
#include <opp.hpp>
#include <iostream>

int main(void) {
    Future<vector<int>> fibs(
        Range<1>(100),
        [] (Index<1> index) [[device]] {
            return parallelFib(index.getX());
        });
    for(auto f = fibs.begin(); f != fibs.end(); f++) {
        cout << f << endl;
    }
}
```
float myArray[...];

Task<float, ReductionBin> sum([myArray](IndexRange<1> index) [[device]] { float sum = 0.;
 for (size_t I = index.begin(); I != index.end(); i++) {
 sum += foo(myArray[i]);
 }
 return float;
});

float sum = task.enqueueWithReduce(Range<1>(1920), sums, plus<float>());
QUESTIONS
Disclaimer & Attribution

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. There is no obligation to update or otherwise correct or revise this information. However, we reserve the right to revise this information and to make changes from time to time to the content hereof without obligation to notify any person of such revisions or changes.

NO REPRESENTATIONS OR WARRANTIES ARE MADE WITH RESPECT TO THE CONTENTS HEREOF AND NO RESPONSIBILITY IS ASSUMED FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED. IN NO EVENT WILL ANY LIABILITY TO ANY PERSON BE INCURRED FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, AMD Phenom, AMD Radeon, the AMD arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. All other names used in this presentation are for informational purposes only and may be trademarks of their respective owners.

OpenCL is a trademark of Apple Inc. used with permission by Khronos.

DirectX is a registered trademark of Microsoft Corporation.

© 2011 Advanced Micro Devices, Inc. All rights reserved.