
 Shadow Volume Extrusion using a Vertex Shader

Shadow Volume Extrusion
using a Vertex Shader

Chris Brennan

3D Application Research Group
ATI Research

Introduction

The shadow volume technique of rendering real time shadows involves drawing geometry that
represents the volume of space that bounds what is in the shadow cast by an object. To calculate if a
pixel being drawn is in or out of a shadow, shoot a ray from the eye through the shadow volume towards
the point on the rendered object and count the number of times the shadow volume is entered and exited.
If the ray has entered more times than exited, the pixel being drawn is in shadow. The stencil buffer can
be used to emulate this by rendering the back sides of the shadow volume triangles while incrementing
the stencil buffer, followed by the front sides of the triangles, which decrement it. If the final result
adds up to where it started, then you have entered and exited the shadow an equal number of times, and
are therefore outside the shadow, otherwise you are inside the shadow. The next step is rendering a light
pass that is masked out by a stencil test.

There are several other very different algorithms to doing shadows [Haines01]. Stencil Shadow

Volumes have their benefits and drawbacks compared to other shadowing algorithms like depth buffers.
The most important tradeoff is that while shadow volumes have infinite precision and no artifacts, they
also have a hard edge and an uncertain render complexity depending on object shape complexity and the
viewer and light positions. Previous major drawbacks to shadow volumes were the CPU power required
to compute the shadow geometry and the requirement that character animation must be done on the CPU
so that a proper shadow geometry could be generated, but a clever vertex shader combined with some
preprocessing removes the need for all CPU computations and therefore allows the GPU to do all the
character animation. A brief comparison of CPU and GPU complexity and their drawbacks can be found
in Game Programming Gems II, p. 482 [Dietrich].

Another historical complexity of shadow volumes that has been solved is what to do if the

viewer is inside the shadow. The problem arises that since the viewer starts in shadow, the stencil count
begins off by one. Many solutions have been proposed [Haines02], and many are very computationally
intensive, but a simple solution exists. Instead of incrementing and decrementing the stencil buffer with
the visible portion of the shadow volume, only modify the stencil buffer when the volume is hidden by
another surface by setting the depth test to fail. This sounds counter intuitive, but what it does is exactly
the same thing, except it counts how many times the ray from the eye to the pixel exits and enters the
shadow volume after the visible point of the pixel. It still tests to see if the pixel is inside or outside of
the shadow volume, but it eliminates the issues with testing to see if the viewer starts in shadow. It does,
however, emphasize the need to make sure that all shadow volumes are complete and closed as opposed
to previous algorithms, which did not require geometry to cap the front or back of the volume.

Excerpted from ShaderX: Vertex and Pixel Shader Tips and Tricks

1
1

 Shadow Volume Extrusion using a Vertex Shader

Excerpted from ShaderX: Vertex and Pixel Shader Tips and Tricks

2
2

Creating Shadow Volumes
The time consuming part of the algorithm is to detect all of the silhouette edges. These are

normally found by taking a dot product with the light vector and each of the edge’s two neighboring face
normals. If one dot product is positive (towards the light) and one is negative (away from the light), then
it is a silhouette edge. For each silhouette edge, create planes extending from the edge away from the
light creating the minimum geometry needed for the shadow volume. Unfortunately, not only is it
expensive to iterate across all of the edges, but also it is expensive to upload the new geometry to the
video card every frame.

However, hardware vertex shaders can be used to do this work on chip. The general idea is to

create geometry that can be modified by a vertex shader to properly create the shadow volume with any
light position so that the geometry can reside on chip. At initialization or preprocess time, for each edge
of the original object geometry, add a quad that has two sides consisting of copies of the original edge
and two opposite sides of zero length. The pseudo code for this is as follows:

For each face
 Calculate face normal
 Create 3 new vertices for this face and face normal
 Insert the face into the draw list
 For each edge of face
 If (edge has been seen before)
 Insert degenerate quad into draw list
 Remove edge from checklist
 Else
 Insert edge into a checklist
If (any edges are left in checklist)

flag an error because the geometry is not a closed volume.

Figure 1 shows the geometry with the quads inserted and spread apart slightly so that they can be
seen. These quads will make up the extruded edges of the shadow volume when required. The original
geometry is still present and is used to cap the extruded edges on the front and back to complete the
volume. After the quad insertion, each vertex neighbors only one of the original faces, and should
include its face’s normal. When rendering the volume, each vertex’s face normal is dotted with the light
vector. If the result is negative the face is facing away from the light and should therefore be pushed out
to the outer extent of the light along the light vector. Otherwise, it stays exactly where the original
geometry lies.

 Shadow Volume Extrusion using a Vertex Shader

Excerpted from ShaderX: Vertex and Pixel Shader Tips and Tricks

3
3

Figure 1: Illustration of invisible quads inserted into
the original geometry to create a new static geometry
to be used with a shadow volume vertex shader

Figure 2: Shadow volumes after being extruded away
from the light.

After this pass is completed, the light pass is rendered using a stencil test to knock out the pixels

that are in shadow.

Figure 3: The final pass completes the effect.

 The shadowed room application with source code can be found on the ATI Developer Relations
website.

Effect File Code
matrix mWVP;
matrix mWV;
matrix mP;
matrix mWVt;
vector cShd;
vector pVL;

vertexshader vShd =
 decl
 {
 stream 0;
 float v0[3]; // Position
 float v1[3]; // FaceNormal

http://www.ati.com/na/pages/resource_centre/dev_rel/sdk/RadeonSDK/Html/Samples/
http://www.ati.com/na/pages/resource_centre/dev_rel/sdk/RadeonSDK/Html/Samples/

 Shadow Volume Extrusion using a Vertex Shader
 }
 asm
 {
 ; Constants:
 ; 16..19 - Composite World*View*Proj Matrix
 ; 20..23 - Composite World*View Matrix
 ; 24..27 - Projection Matrix
 ; 28..31 - Inv Trans World*View
 ; 90 - {light range, debug visualization amount, z near, z far}
 ; 91 - View Space Light Position

 vs.1.0
 def c0, 0,0,0,1

 ; View Space
 m4x4 r0, v0, c20 ; World*View Transform of point P (pP)
 m3x3 r3, v1, c28 ; World*View Transform of normal (vN)

 sub r1, r0, c91 ; Ray from light to the point (vLP)

 dp3 r11.x, r1, r1 ; length^2
 rsq r11.y, r11.x ; 1/length
 mul r1, r1, r11.y ; normalized

 rcp r11.y, r11.y ; length
 sub r11.z, c90.x, r11.y ; light.Range - len(vLP)
 max r11.z, r11.z, c0.x ; extrusion length = clamp0(light.Range - len(vLP))

 dp3 r10.z, r3, r1 ; vLP dot vN
 slt r10.x, r10.z, c0.x ; if (vLP.vN < 0) (is pointing away from light)

 mad r2, r1, r11.z, r0 ; extrude along vLP

 ; Projected Space
 m4x4 r3, r2, c24 ; Projected extruded position
 m4x4 r0, v0, c16 ; World*View*Proj Transform of original position

 ; Chose final result
 sub r10.y, c0.w, r10.x ; !(vLP.vN >= 0)
 mul r1, r3, r10.y
 mad oPos, r0, r10.x, r1
 };

technique ShadowVolumes
{
 pass P0
 {
 vertexshader = <vShd>;

 VertexShaderConstant[16] = <mWVP>;
 VertexShaderConstant[20] = <mWV>;
 VertexShaderConstant[24] = <mP>;
 VertexShaderConstant[28] = <mWVt>;
 VertexShaderConstant[90] = <cShd>;
 VertexShaderConstant[91] = <pVL>;

 ColorWriteEnable = 0;
 ZFunc = Less;
 ZWriteEnable = False;
 StencilEnable = True;
 StencilFunc = Always;
 StencilMask = 0xffffffff;
 StencilWriteMask = 0xffffffff;

 CullMode = CCW;
 StencilZFail = IncrSat;
 }

 pass P1
 {
 CullMode = CW;
 StencilZFail = DecrSat;
 }
}

Excerpted from ShaderX: Vertex and Pixel Shader Tips and Tricks

4
4

 Shadow Volume Extrusion using a Vertex Shader

Using Shadow Volumes with Character Animation
The technique as described is for statically shaped objects, and does not include characters that

are skinned or tweened. The biggest advantage of doing shadow volume extrusion in a vertex shader is
that the volumes can exist as static vertex buffers on the GPU and the updated geometry does not have
to be uploaded every frame. Therefore this technique needs to be extended to work on animated
characters as well. Otherwise if the animation of the shadow volume were to be done on the CPU it
would possible to do the optimized shadow volume creation at the same time.

The most straightforward approach is to copy the vertex animation data to the shadow volume

geometry and skin and/or tween the face normal as you would the vertex normal. Unfortunately the face
normals need to be very accurate and consistent across all vertices of a face, otherwise objects will be
split and extruded in inappropriate places resulting in incorrect shadow volumes.

Figure 4: Artifacts caused by skinned face normals.
Notice the notch in the shoulder.

 These artifacts are the result of the extrusion happening across a face of the original geometry as
opposed to the inserted quads along the face edges. This is caused by the fact that each vertex has
different weights for skinning which yield a different face normal for each of the three vertices of a face.
When that face becomes close to being a silhouette edge, it may have one or two vertices of the face
moved away from the light, while the other one stays behind.

The ideal solution is to animate the positions and regenerate the face normals. However,
generating face normals requires vertex neighbor information that is not normally available in a vertex
shader. One possible solution is to make each vertex contain its two neighbor’s position information,
animate the vertex position as well at its two neighbors, and recalculate the face normal with a cross
product. Three times the regular vertex position data would need to be stored and animated. This can
sometimes be very expensive depending on the animation scheme and the size of the models.

An inexpensive way to fix the variation in face normals across a face is to calculate skinning
weights per face in addition to per vertex and use the face weights for the face normal. This can be done
by averaging all of the vertex weights, or by extracting them directly from the original art. Using the
same weight for each vertex of a face guarantees that the shadow volume can only be extruded along the
edge quads.

Excerpted from ShaderX: Vertex and Pixel Shader Tips and Tricks

5
5

 Shadow Volume Extrusion using a Vertex Shader

Figure 5: Animated shadow volumes with face
normals skinned by face weights.

By using face weights for the face normals, the previously seen artifacts are not visible. This
technique can be seen in the included ATI Island Demos.

References
[Dietrich] Dietrich, Sim. “Practical Priority Buffer Shadows,” Game Programming Gems II, ed Mark

DeLoura, Charles River Media, p. 482, 2001.
[Haines01] Haines, Eric and Möller, Tomas. “Real-Time Shadows,” GDC 2001 Proceedings.
[Haines02] Haines, Eric and Akenine-Möller, Tomas, Real-Time Rendering, 2nd edition, A.K. Peters

Ltd, 2002.

Excerpted from ShaderX: Vertex and Pixel Shader Tips and Tricks

6
6

http://www.ati.com/developer/demos/r8000.html
http://www.gdconf.com/archives/proceedings/2001/haines.pdf
http://www.realtimerendering.com/

	Introduction
	Creating Shadow Volumes
	Effect File Code
	Using Shadow Volumes with Character Animation
	References

