© 2007-2008 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. The information contained herein may be of a preliminary or advance nature and is subject to change without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice.

Trademarks

AMD, the AMD Arrow logo, AMD Athlon, AMD Sempron, AMD Turion, and combinations thereof, are trademarks of Advanced Micro Devices, Inc.

HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 2008</td>
<td>3.00</td>
<td>Initial public release.</td>
</tr>
</tbody>
</table>

Revision Guide for AMD Family 11h Processors
Overview

The purpose of the Revision Guide for AMD Family 11h Processors is to communicate updated product information to designers of computer systems and software developers. This revision guide includes information on the following products:

- AMD Athlon™ X2 Dual-Core Processor
- AMD Sempron™ Processor
- AMD Turion™ X2 Dual-Core Mobile Processor
- AMD Turion X2 Ultra Dual-Core Mobile Processor

This guide consists of three major sections:

- **Processor Identification:** This section, starting on page 7, shows how to determine the processor revision, program and display the processor name string, and construct the processor name string.

- **Product Errata:** This section, starting on page 14, provides a detailed description of product errata, including potential effects on system operation and suggested workarounds. An erratum is defined as a deviation from the product’s specification, and as such may cause the behavior of the processor to deviate from the published specifications.

- **Documentation Support:** This section, starting on page 37, provides a listing of available technical support resources.

Revision Guide Policy

Occasionally, AMD identifies product errata that cause the processor to deviate from published specifications. Descriptions of identified product errata are designed to assist system and software designers in using the processors described in this revision guide. This revision guide may be updated periodically.
Conventions

Numbering

- **Binary numbers.** Binary numbers are indicated by appending a “b” at the end, e.g., 0110b.

- **Decimal numbers.** Unless specified otherwise, all numbers are decimal. This rule does not apply to the register mnemonics; register mnemonics all utilize hexadecimal numbering.

- **Hexadecimal numbers.** Hexadecimal numbers are indicated by appending an “h” to the end, e.g., 45F8h.

- **Underscores in numbers.** Underscores are used to break up numbers to make them more readable. They do not imply any operation. e.g., 0110_1100b.

- **Undefined digit.** An undefined digit, in any radix, is notated as a lower case “x”.

Register References and Mnemonics

In order to define errata workarounds it is sometimes necessary to reference processor registers. References to registers in this document use a mnemonic notation consistent with that defined in the *BIOS and Kernel Developer's Guide (BKDG) for AMD Family 11h Processors*, order# 41256. Each mnemonic is a concatenation of the register-space indicator and the offset of the register. The mnemonics for the various register spaces are as follows:

- **IOXXX:** x86-defined input and output address space registers; XXX specifies the byte address of the I/O register in hex (this may be 2 or 3 digits). This space includes the I/O-Space Configuration Address Register (IOCF8) and the I/O-Space Configuration Data Port (IOCFC) to access configuration registers.

- **FYxXXX:** PCI-defined configuration space; XXX specifies the byte address of the configuration register (this may be 2 or 3 digits) in hex; Y specifies the function number. For example, F3x40 specifies the register at function 3, address 40h. Each processor node includes five functions, 0 through 4.

- **FYxXXX_xZZZZZ:** Port access through the PCI-defined configuration space; XXX specifies the byte address of the data port configuration register (this may be 2 or 3 digits) in hex; Y specifies the function number; ZZZZZ specifies the port address (this may be 2 to 7 digits) in hex. For example, F2x9C_x1C specifies the port 1Ch register accessed using the data port register at function 2, address 9Ch. Refer to the *BIOS and Kernel Developer's Guide (BKDG) for AMD Family 11h Processors*, order# 41256 for access properties.
• APICXXX: APIC memory-mapped registers; XXX is the byte address offset from the base address in hex (this may be 2 or 3 digits). The base address for this space is specified by the APIC Base Address Register (APIC_BAR) at MSR1B.

• CPUID FnXXXX_XXXX_RRR: processor capabilities information returned by the CPUID instruction where the CPUID function is XXXX_XXXX (in hex). When a register is specified by RRR, the reference is to the data returned in that register. For example, CPUID Fn8000_0001_EAX refers to the data in the EAX register after executing CPUID instruction function 8000_0001h.

• MSRXXXX_XXXX: model specific registers; XXXX_XXXX is the MSR number in hex. This space is accessed through x86-defined RDMSR and WRMSR instructions.

Many register references use the notation “[]” to identify a range of registers. For example, F2x[1,0][4C:40] is a shorthand notation for F2x040, F2x044, F2x048, F2x04C, F2x140, F2x144, F2x148, and F2x14C.
Processor Identification

This section shows how to determine the processor revision, program and display the processor name string, and construct the processor name string.

Revision Determination

Figure 1 shows the format of the value from CPUID Fn0000_0001_EAX.

![Figure 1. Format of CPUID Fn0000_0001_EAX](image)

Table 1 shows the identification number from CPUID Fn0000_0001_EAX for each revision of the processor.

<table>
<thead>
<tr>
<th>CPUID Fn0000_0001_EAX Value</th>
<th>Rev.</th>
<th>AMD Turion™ X2 Ultra Dual-Core Mobile Processor</th>
<th>AMD Turion™ X2 Dual-Core Mobile Processor</th>
<th>AMD Athlon™ X2 Dual-Core Processor</th>
<th>AMD Sempron™ Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>LG-B1</td>
<td>00200F31h</td>
<td>00200F31h</td>
<td>00200F31h</td>
<td>00200F31h</td>
<td>00200F31h</td>
</tr>
</tbody>
</table>
Programming and Displaying the Processor Name String

This section, intended for BIOS programmers, describes how to program and display the 48-character processor name string that is returned by CPUID Fn8000_000[4:2]. The hardware or cold reset value of the processor name string is 48 ASCII NUL characters, so the BIOS must program the processor name string before any general purpose application or operating system software uses the extended functions that read the name string. It is common practice for the BIOS to display the processor name string and model number whenever it displays processor information during boot up.

Note: Motherboards that do not program the proper processor name string and model number will not pass AMD validation and will not be posted on the AMD Recommended Motherboard Web site.

The name string must be ASCII NUL terminated and the 48-character maximum includes that NUL character.

The processor name string is programmed by MSR writes to the six MSR addresses covered by the range C001_00[35:30]h. Refer to the BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 11h Processors, order# 41256, for the format of how the 48-character processor name string maps to the 48 bytes contained in the six 64-bit registers of MSRC001_00[35:30]h.

The processor name string is read by CPUID reads to a range of CPUID functions covered by CPUID Fn8000_000[4:2]. Refer to CPUID Fn8000_000[4:2] in the BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 11h Processors, order# 41256, for the 48-character processor name string mapping to the 48 bytes contained in the twelve 32-bit registers of CPUID Fn8000_000[4:2].

Constructing the Processor Name String

This section describes how to construct the processor name string. BIOS uses the following fields to create the name string:

- **BrandId[15:0]** is from CPUID Fn8000_0001_EBX.
- **String1[3:0]** is defined to be BrandID[14:11]. This field is an index to a string value used to create the processor name string. The definition of the string1 values are provided in Table 3 on page 9.
- **String2[3:0]** is defined to be BrandID[3:0]. This field is an index to a string value used to create the processor name string. The definition of the string2 values are provided in Table 4 on page 10.
- **Model[6:0]** is defined to be BrandID[10:4]. This field is used to create the model number in the name string. The model field represents a numerical model number which should be converted to ASCII for display of the model number.
- **Pg[0]** is defined to be BrandID[15]. This field is used to index the appropriate page for the String1, String2, and Model values.
- PkgTyp[3:0] is from CPUID Fn8000_0001_EBX. This field specifies the package type as defined in the BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 11h Processors, order #41256, and is used to index the appropriate string tables from Table 2.

- NC[7:0] is from CPUID Fn8000_0008_ECX. This field identifies how many physical cores are present as defined in the BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 11h Processors, order #41256, and is used to index the appropriate strings from Table 3 on page 9 and Table 4 on page 10.

The name string is formed as follows:

1. Translate Model[6:0] into an ASCII value (Model), model numbers will range from 01-99. Model numbers less than 10 should include a leading zero, e.g., 09.
2. Select the appropriate string tables based on PkgTyp[3:0] from Table 2.
3. Index into the referenced tables using String1[3:0], String2[3:0], and NC[7:0] to obtain the String1 and String2 values.
4. If String1 is an undefined value skip step 5 and program the name string as follows:

 \[\text{Name String} = \text{AMD Processor Model Unknown} \]

5. Else concatenate the strings with the two character ASCII translation of Model[3:0] from step 1 to obtain the name string as follows:

 If String2 is undefined, \[\text{Name string} = \text{String1, Model} \]

 Else, \[\text{Name string} = \text{String1, Model, String2} \]

Table 2. String Table Reference Per Package Type

<table>
<thead>
<tr>
<th>PkgTyp [3:0]</th>
<th>String1 Table</th>
<th>String2 Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>0h-1h</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>2h</td>
<td>Table 3 on page 9</td>
<td>Table 4 on page 10</td>
</tr>
<tr>
<td>3h-Fh</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Table 3. String1 Values for Socket S1g2 Processors

<table>
<thead>
<tr>
<th>Pg[0]</th>
<th>NC [7:0]</th>
<th>String1 [3:0]</th>
<th>Value</th>
<th>Note</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b</td>
<td>0h</td>
<td>00h</td>
<td>AMD Sempron(tm) SI-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1h</td>
<td>00h</td>
<td>AMD Turion(tm) X2 Ultra Dual-Core Mobile ZM-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01h</td>
<td>AMD Turion(tm) X2 Dual-Core Mobile RM-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02h</td>
<td>AMD Athlon(tm) X2 Dual-Core QL-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All other values</td>
<td>AMD Processor Model Unknown</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. String2 Value for Socket S1g2 Processors

<table>
<thead>
<tr>
<th>Pg[0]</th>
<th>NC [7:0]</th>
<th>String2 [3:0]</th>
<th>Value</th>
<th>Note</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b</td>
<td>0h</td>
<td>00h</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1h</td>
<td>00h</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>xxh</td>
<td>0Fh</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. The String2 indexes 0h and 0Fh are defined as an empty string, i.e., no suffix.
F4x164 Fixed Errata Register

Communicating the status of an erratum requiring a workaround within a stepping of a processor family is necessary in certain circumstances. F4x164 is used to communicate the status of such an erratum fix so that BIOS or system software can determine the necessity of applying the workaround. Under these circumstances, the erratum workaround references the specified bit to enable software to test for the presence of the erratum. The revisions of a processor, prior to the definition of a bit may not be affected by the erratum. Therefore, software should use the stepping as the first criteria to identify the applicability of an erratum. Once defined, the definition of the status bit will persist within the family of processors.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31:0</td>
<td>0000_0000h. Reserved.</td>
</tr>
</tbody>
</table>
MSRC001_0140 OS Visible Work-around MSR0 (OSVW_ID_Length)

This register, as defined in *AMD64 Architecture Programmer’s Manual Volume 2: System Programming*, order# 24593, is used to specify the number of valid status bits within the OS Visible Work-around status registers.

The reset default value of this register is 0000_0000_0000_0000h.

BIOS shall program the OSVW_ID_Length to 0000h prior to hand-off to the OS.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:16</td>
<td>Reserved.</td>
</tr>
<tr>
<td>15:0</td>
<td>OSVW_ID_Length: OS visible work-around ID length. Read-write</td>
</tr>
</tbody>
</table>
This register, as defined in *AMD64 Architecture Programmer’s Manual Volume 2: System Programming*, order# 24593, provides the status of the known OS visible errata. Known errata are assigned an OSVW_ID corresponding to the bit position within the valid status field.

Operating system software should use MSRC001_0140 to determine the valid length of the bit status field. For all valid status bits: 1=Hardware contains the erratum, and an OS software work-around is required or may be applied instead of a BIOS workaround. 0=Hardware has corrected the erratum, so an OS software work-around is not necessary.

The reset default value of this register is 0000_0000_0000_0000h.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:0</td>
<td>OsvwStatusBits: Reserved. OS visible work-around status bits. Read-write.</td>
</tr>
</tbody>
</table>

BIOS shall program the state of the valid status bits as shown in Table 5 prior to hand-off to the OS.

Table 5. Cross Reference of Product Revision to OSVW ID

<table>
<thead>
<tr>
<th>Revision Number</th>
<th>MSRC001_1041 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LG-B1</td>
<td>0000_0000_0000_0000h</td>
</tr>
</tbody>
</table>
Product Errata

This section documents product errata for the processors. A unique tracking number for each erratum has been assigned within this document for user convenience in tracking the errata within specific revision levels. Table 6 cross-references the revisions of the part to each erratum. An “X” indicates that the erratum applies to the revision. The absence of an “X” indicates that the erratum does not apply to the revision. An “*” indicates advance information that the erratum has been fixed but not yet verified. “No fix planned” indicates that no fix is planned for current or future revisions of the processor.

Note: There may be missing errata numbers. Errata that have been resolved from early revisions of the processor have been deleted, and errata that have been reconsidered may have been deleted or renumbered.

Table 6. Cross-Reference of Product Revision to Errata

<table>
<thead>
<tr>
<th>No.</th>
<th>Errata Description</th>
<th>Revision Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>LG-B1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Inconsistent Global Page Mappings Can Lead to Machine Check Error</td>
<td>No fix planned</td>
</tr>
<tr>
<td>57</td>
<td>Some Data Cache Tag Eviction Errors Are Reported As Snoop Errors</td>
<td>No fix planned</td>
</tr>
<tr>
<td>60</td>
<td>Single Machine Check Error May Report Overflow</td>
<td>No fix planned</td>
</tr>
<tr>
<td>77</td>
<td>Long Mode CALLF or JMPF May Fail To Signal GP When Callgate Descriptor is Beyond GDT/LDT Limit</td>
<td>No fix planned</td>
</tr>
<tr>
<td>122</td>
<td>TLB Flush Filter May Cause Coherency Problem in Multicore Systems</td>
<td>No fix planned</td>
</tr>
<tr>
<td>144</td>
<td>CLFLUSH to Shadow RAM Address Will Not Invalidate</td>
<td>No fix planned</td>
</tr>
<tr>
<td>171</td>
<td>Instruction Break Point On VMRUN Instruction Leads To Unpredictable System Behavior</td>
<td>No fix planned</td>
</tr>
<tr>
<td>230</td>
<td>Misaligned I/O Reads That Span CFCh Incorrectly Generate a Downstream I/O Request</td>
<td>No fix planned</td>
</tr>
<tr>
<td>250</td>
<td>I/O Reads That Span 3BBh May Be Positively Decoded When They Should Not Be Positively Decoded</td>
<td>No fix planned</td>
</tr>
<tr>
<td>251</td>
<td>Northbridge Flow Control Credits May Be Lost Due to Watchdog Time Out</td>
<td>No fix planned</td>
</tr>
<tr>
<td>272</td>
<td>Logged Sync Error Results in Error Overflow Being Set</td>
<td>No fix planned</td>
</tr>
<tr>
<td>288</td>
<td>Write To A F4x184 Register May Access Incorrect Array Register</td>
<td>No fix planned</td>
</tr>
<tr>
<td>297</td>
<td>Single Machine Check Error May Report Overflow</td>
<td>No fix planned</td>
</tr>
<tr>
<td>305</td>
<td>Northbridge Will Not Raise an MCA Exception Unless Status Bits Are Cleared</td>
<td>No fix planned</td>
</tr>
<tr>
<td>307</td>
<td>Reset Occurring Near a Dynamic Link Frequency Change May Cause System Failures</td>
<td>No fix planned</td>
</tr>
<tr>
<td>311</td>
<td>Certain Clock Divisors May Result in Unpredictable System Behavior</td>
<td>No fix planned</td>
</tr>
<tr>
<td>312</td>
<td>CVTSD2SS and CVTPD2PS Instructions May Not Round to Zero</td>
<td>No fix planned</td>
</tr>
<tr>
<td>316</td>
<td>Incorrect CpuDid May Be Applied During ACPI States</td>
<td>No fix planned</td>
</tr>
<tr>
<td>332</td>
<td>Alternative Voltage Is Not Supported</td>
<td>No fix planned</td>
</tr>
<tr>
<td>339</td>
<td>APIC Timer Rollover May Be Delayed</td>
<td>No fix planned</td>
</tr>
<tr>
<td>342</td>
<td>SMIs That Are Not Intercepted May Disable Interrupts</td>
<td>No fix planned</td>
</tr>
</tbody>
</table>
Table 7 cross-references the errata to each processor segment. An empty cell signifies that the erratum does not apply to the processor segment. “X” signifies that the erratum applies to the processor segment. “N/A” signifies that the erratum does not apply to the processor segment due to the silicon revision.

Table 7. Cross-Reference of Errata to Processor Segments

<table>
<thead>
<tr>
<th>Errata Number</th>
<th>AMD Turion™ X2 Ultra Dual-Core Mobile Processor</th>
<th>AMD Turion™ X2 Dual-Core Mobile Processor</th>
<th>AMD Athlon™ X2 Dual-Core Processor</th>
<th>AMD Sempron™ Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>57</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>60</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>77</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>122</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>144</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>171</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>230</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>250</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>251</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>272</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>288</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>297</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>305</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>307</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>311</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>312</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>316</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>332</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>339</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>342</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
1 Inconsistent Global Page Mappings Can Lead to Machine Check Error

Description
If the same linear to physical mapping exists in multiple CR3 contexts, and that mapping is marked global in one context and not global in another context, then a machine check error may be reported by the TLB error detection logic (depending on the specific access pattern and TLB replacements encountered).

Potential Effect on System
In the somewhat unlikely event that all required conditions are present (including the effects of the TLB replacement policy), then an unexpected machine check error may be reported. If the erratum occurs in the instruction cache TLB (L1 or L2), the apparent error is logged and corrected. If the erratum occurs in the data cache TLB (L1 or L2), the apparent error is logged and reported as an uncorrectable machine check error.

Suggested Workaround
None required. This is not expected to occur in real systems.

Fix Planned
No
57 Some Data Cache Tag Eviction Errors Are Reported As Snoop Errors

Description

In some cases, the machine check error code on a data cache (DC) tag array parity error erroneously classifies an eviction error as a snoop error.

The common cases of cache line replacements and external probes are classified correctly (as eviction and snoop respectively). The erroneous cases occur when a tag error is detected during a DC eviction that was generated by a hardware prefetch, a cache line state change operation, or a number of other internal microarchitectural events. In such cases, the error code logged in the DC Machine Check Status register (MC0_STATUS, MSR401) erroneously indicates a snoop error.

Potential Effect on System

Internally detected DC tag errors may be reported to software as having been detected by snoops. Depending upon machine check software architecture, the system response to such errors may be broader than necessary.

Suggested Workaround

None required.

Fix Planned

No
60 Single Machine Check Error May Report Overflow

Description
A single parity error encountered in the data cache tag array may incorrectly report the detection of multiple errors, as indicated by the overflow bit of the DC Machine Check Status register (bit 62 of MSR401).

Potential Effect on System
System software may be informed of a machine check overflow when only a single error was actually encountered.

Suggested Workaround
Do not rely on the state of the OVER bit in the DC Machine Check Status register.

Fix Planned
No
77 Long Mode CALLF or JMPF May Fail To Signal GP When Callgate Descriptor is Beyond GDT/LDT Limit

Description
If the target selector of a far call or far jump (CALLF or JMPF) instruction references a 16-byte long mode system descriptor where any of the last 8 bytes are beyond the GDT or LDT limit, the processor fails to report a General Protection fault.

Potential Effect on System
None expected, since the operating system typically aligns the GDT/LDT limit such that all descriptors are legal. However, in the case of erroneous operating system code, the above described GP fault will not be signaled, resulting in unpredictable system failure.

Suggested Workaround
None required, it is anticipated that long mode operating system code will ensure the GDT and LDT limits are set high enough to cover the larger (16-byte) long mode system descriptors.

Fix Planned
No
122 TLB Flush Filter May Cause Coherency Problem in Multicore Systems

Description

Under highly specific internal timing conditions in system configurations that include more than one processor core, coherency problems may arise between the page tables in memory and the translations stored in the on-chip TLBs. This can result in the possible use of stale translations even after software has performed a TLB flush.

Potential Effect on System

Unpredictable system failure. This scenario has only been observed in a highly randomized synthetic stress test.

Suggested Workaround

In multicore systems, disable the TLB flush filter by setting HWCR.FFDIS (bit 6 of MSRC001_0015).

Fix Planned

No
144 CLFLUSH to Shadow RAM Address Will Not Invalidate

Description

WrDram and RdDram bits in extended MTRR type registers are used to copy BIOS ROM to corresponding DRAM and then execute out of DRAM. When these are configured to direct writes to ROM (WrMem =0b) and reads to DRAM (RdMem =01b), the CLFLUSH instruction will not invalidate shadow RAM addresses in the cache.

Potential Effect on System

CLFLUSH instruction will be ineffective for shadow RAM space.

Suggested Workaround

Use the WBINVD instruction instead of CLFLUSH in shadow RAM space.

Fix Planned

No
171 Instruction Break Point On VMRUN Instruction Leads To Unpredictable System Behavior

Description

VMRUN can be interrupted using a hardware instruction breakpoint using one of the debug registers, DR[0-3]. When the debug handler executes IRET, the processor is expected to execute the VMRUN instruction. However, in the failing case, the processor incorrectly re-enters the breakpoint handler with mixed guest and host state. This in turn causes erroneous execution and leads to unpredictable system behavior.

Potential Effect on System

Hypervisor developers will not be able to use hardware instruction break point on VMRUN instruction.

Suggested Workaround

Set the breakpoint on the instruction prior to VMRUN, then single step through VMRUN.

Fix Planned

No
230 Misaligned I/O Reads That Span CFCh Incorrectly Generate a Downstream I/O Request

Description

When configuration space is enabled, IOCF8[31] is 1b, an I/O read to address CFCh should result in a configuration request to the address specified in register IOCF8. However, when a misaligned downstream double word I/O read spans address CFCh the northbridge (NB) correctly sends an I/O read requests to CF8h with appropriate byte enables to the device attached to the I/O link, but incorrectly sends an I/O read request to CFCh instead of the configuration request.

Potential Effect on System

None expected.

Suggested Workaround

Software should not issue misaligned read requests to I/O addresses that span address CFCh.

Fix Planned

No
250 I/O Reads That Span 3BBh May Be Positively Decoded When They Should Not Be Positively Decoded

Description

The northbridge enables positive decode within the first 64K of I/O space mapped by the I/O base/limit registers (F1xC0/C4) for the legacy VGA registers when F1xC0[4] (VE) is 1b and F1xF4[0] (VE) is 0b, i.e. accesses in which address bits[9:0] range from 3B0h to 3BBh or 3C0h to 3DFh and address bits[24:16] are all 0. However, if an I/O read spans address 3BBh, the northbridge will positive decode the entire access including the addresses outside the legacy VGA register space (i.e. 3B[C:E]h).

Potential Effect on System

A downstream request to I/O addresses 3B[C:E]h may not properly set the Compat bit. This may result in the packet not being forwarded to the compatibility bus.

Suggested Workaround

None required.

Fix Planned

No
251 Northbridge Flow Control Credits May Be Lost Due to Watchdog Time Out

Description
A peer to peer or CPU transaction that times out in the northbridge due to a Watchdog time out may result in lost flow control credits. In addition, a master abort is not sent for peer to peer transactions that time out in the northbridge due to a Watchdog time out.

Potential Effect on System
The system may hang.

Suggested Workaround
None. The watchdog time out is correctly reported as a MCA exception.

Fix Planned
No
272 Logged Sync Error Results in Error Overflow Being Set

Description
When a sync error is logged in MC4_STATUS (MSR411), an error overflow is always indicated by
MC4_STATUS[Over] (MSR411[62]) being set to 1b.

Potential Effect on System
None.

Suggested Workaround
None required.

Fix Planned
No
288 Write To A F4x184 Register May Access Incorrect Array Register

Description

The contents of the Link Phy Offset Register (F4x180) may be used at the time of the write into the Link Phy Data Port register (F4x184) to determine which set of registers is being accessed. Since the software does not write F4x180 until after F4x184 when performing an array write operation, this may result in the array write not occurring or going to an unpredictable array register.

Potential Effect on System

Unpredictable results may occur.

Suggested Workaround

The registers accessed by F4x184_x[N;0] can be split into four spaces

1. Direct map registers (When DirectMapEn is 1b)
2. Link FIFO Read Pointer Optimization Registers (offsets CFh and DFh)
3. BIST registers (offsets 100h to 144h)
4. Phy registers (offset E0h)

Before performing a write to a F4x184_x[N;0] array register, when the value (i.e. from a previous access) in LinkPhyOffset or DirectMapEn maps to a different space (as defined above), software should first perform a read operation to the intended array register.

No workaround is necessary when performing an array read access or when no space switch is involved.

Fix Planned

No
297 Single Machine Check Error May Report Overflow

Description
A single tag snoop parity error encountered in the instruction cache tag array may incorrectly report the detection of multiple errors, as indicated by the overflow bit of the IC Machine Check Status register (MSR405[62]).

Potential Effect on System
System software may be informed of a machine check overflow when only a single error was actually encountered.

Suggested Workaround
None required.

Fix Planned
No
305 Northbridge Will Not Raise an MCA Exception Unless Status Bits Are Cleared

Description
A machine check (MCA) exception is not raised if the Northbridge detects an overflow condition. An overflow condition exists if there is already an enabled uncorrectable machine check exception in the Northbridge MCA status register at the time that a second uncorrectable error is detected.

Potential Effect on System
The system will not enter the shutdown state if another uncorrectable error occurs prior to the MCA handler clearing the Northbridge MCA status register.

Suggested Workaround
None.

Fix Planned
No
307 Reset Occurring Near a Dynamic Link Frequency Change May Cause System Failures

Description
System failure can occur if reset is asserted while an LDTSTOP disconnect is in process for a Centralized Dynamic Link Frequency (CDLF) change and the HyperTransport™ link is operating at a speed of 1000 MHz or lower (Gen1).

Potential Effect on System
The system may fail to reset.

Suggested Workaround
CDLF should not be used in conjunction with Gen1 frequency speeds.

Fix Planned
No
311 Certain Clock Divisors May Result in Unpredictable System Behavior

Description
The processor may violate internal timing requirements at certain core clock divisors. This may occur if software modifies the CpuFid in the P-state registers (MSRC001_00[6B:64][5:0]) or when core clocks are ramped due to P-state transitions in response to writes to the P-state Control register (MSRC001_0062), HTC, or Halt instruction execution.

Potential Effect on System
Unpredictable system behavior.

Suggested Workaround
Contact your AMD representative for information on a BIOS update. In addition, software should not modify the P-state registers (MSRC001_00[6B:64]), or the HtcPstateLimit (F3x64[30:28]), from their reset values.

Fix Planned
No
312 CVTSD2SS and CVTPD2PS Instructions May Not Round to Zero

Description
The Convert Scalar Double-Precision Floating Point to Scalar Single-Precision Floating Point (CVTSD2SS) and Convert Packed Double-Precision Floating Point to Packed Single-Precision Floating Point (CVTPD2PS) instructions do not round to zero when the Flush to Zero and Underflow Mask bits (MXCSR bits 15 and 11) are set to 1b and the double-precision operand is less than the smallest single-precision normal number.

Potential Effect on System
The conversion result will yield the smallest single-precision normalized number rather than zero. It is not expected that this will result in any anomalous software behavior since enabling flush to zero provides less precise results.

Suggested Workaround
None.

Fix Planned
No
316 Incorrect CpuDid May Be Applied During ACPI States

Description
The processor may use an incorrect core clock divisor if it enters or exits the HTC-active state in a narrow window of time after it has applied the CpuDid for an ACPI power state transition. Under these conditions, the CpuDid from the current P-state as indicated by CurPstate (MSRC001_0063[2:0]) is used rather than the CpuDid from the ACPI power state.

Potential Effect on System
Unpredictable system behavior may result if an alternate voltage (altvid) is enabled for the ACPI power state, for example in C1E, and the CpuDid applied is less than that specified for the ACPI power state.

Suggested Workaround
Contact your AMD representative for information on a BIOS update.

Fix Planned
No
332 Alternative Voltage Is Not Supported

Description
The processor may function improperly when the alternative voltage (altvid) is applied.

Potential Effect on System
Unpredictable system behavior.

Suggested Workaround
System software should not enable the alternative voltage through the Power Management Control Low Register[PMM1[CpuAltVidEn]] (F3x80[12]) or Power Management Control Low Register[PMM3[CpuAltVidEn]] (F3x80[28]). In addition, system software should not enable the alternative voltage through the LMM Configuration Register[LmmCpuAltVidEn] (F4x174_x[0F:00][17]) when using centralized link management.

Fix Planned
No
339 APIC Timer Rollover May Be Delayed

Description
The APIC timer does not immediately rollover when it transitions to zero and Timer Local Vector Table Entry[Mode] (APIC320[17]) is configured to run in periodic mode. In addition, when Timer Local Vector Table Entry[Mask] (APIC320[16]) is configured to generate an interrupt, the interrupt is also delayed whether configured for periodic or one-shot mode.

The per rollover error that may be observed is between 85 and 210 ns.

Potential Effect on System
None expected. The standard use of the APIC timer and the level of accuracy required does not make the error significant.

Suggested Workaround
None required.

Fix Planned
No
342 SMI s That Are Not Intercepted May Disable Interrupts

Description
During a resume from SMM that is due to an unintercepted SMI from a SVM guest context, the processor core does not restore the correct effective interrupt flag (IF) if the guest VMCB V_INTR_MASKING bit (offset 060h bit 24) is 1b. Under these circumstances, the effective interrupt flag may be zero.

SMIs are not intercepted if VMCB offset 00Ch bit 2 is 0b or HWCR[SmmLock] (MSRC001_0015[0]) is 1b.

Potential Effect on System
The guest context may run with interrupts disabled until the next guest intercept. The hypervisor may not be able to regain control and the system may hang.

Suggested Workaround
None. BIOS should not set HWCR[SmmLock] (MSRC001_0015[0]) and hypervisors should intercept SMIs.

Fix Planned
No
Documentation Support

The following documents provide additional information regarding the operation of the processor:

- *BIOS and Kernel Developer’s Guide* (BKDG) for AMD Family 11h Processors, order# 41256
- *AMD64 Architecture Programmer’s Manual Volume 1: Application Programming*, order# 24592
- *AMD64 Architecture Programmer’s Manual Volume 2: System Programming*, order# 24593
- *AMD64 Architecture Programmer’s Manual Volume 3: General-Purpose and System Instructions*, order# 24594
- *AMD64 Architecture Programmer’s Manual Volume 5: 64-Bit Media and x87 Floating-Point Instructions*, order# 26569
- *AMD CPUID Specification*, order# 25481
- *HyperTransport™ I/O Link Specification* (www.hypertransport.org)

See the AMD Web site at www.amd.com for the latest updates to documents.